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Polynomial Identities, Indices, and Duality for the
N=1 Superconformal Model SM(2, 4v)

Alexander Berkovich,' Barry M. McCoy,> and William P. Orrick?

Received August 4, 1995

We prove polynomial identities for the N =1 superconformal model SM(2, 4v)
which generalize and extend the known Fermi/Bose character identities. Our
proof uses the g-trinomial coefficients of Andrews and Baxter on the bosonic
side and a recently introduced very general method of producing recursion
relations for g-series on the fermionic side. We use these polynomials
to demonstrate a dual relation under g—¢~' between SM(2,4v) and
M(2v—1, 4v). We also introduce a generalization of the Witten index which is
expressible in terms of the Rogers false theta functions.

KEY WORDS:

1. INTRODUCTION

All chiral partition functions of conformal field theory have two distinct
representations: (1) a bosonic form which may be expressed in terms of
theta functions from which modular transformation properties are readily
apparent,'” and (2) a fermionic form in terms of g-series in which the
quasiparticle spectrum of the theory is clearly seen. The bosonic form is
most useful in computing the conformal dimensions. The fermionic form is
best adapted to study massive perturbations. The equality of the two forms
can be thought of as generalized Rogers-Ramanujan identities.

The study of the bosonic representations has been well developed for
over a decade. However, with the exceptions of the pioneering work on
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characters of 4" (refs. 2 and 3) and the Z,, parafermionic theories,'*>' the
study of the fermionic representations started only several years ago and in
the last few years there have been many conjectures and proofs of ferionic
representations of the various characters./¢-%)

In this paper we consider the N =1 superconformal model SM(2, 4v).
The bosonic form of this model’s characters is a special case of the general
formula‘*®’

2P gy =320 (q)

o

(—g° ), R e in s
— q o Z (qﬂjpﬂ+rp~-\/))/2_qup+:)(m+.\)/2) (1.1)

(). ;7.
where
(A)k___{l,'};é(l—Aqf), f:(l)z (12)
and
e = { 5 %f a %s even [ Neveu—Schwarz (NS) sector] (1.3)
1 if @ is odd [ Ramond (R) sector ]

Here r=1,2,.,p—1 and s=1,2.,p'—1, and p and (p'—p)/2 are
coprime.
Setting p=2, p’=4v in (1.1), we have for n=0, +1

o ' (—gt'*imzy = o
R ag s -1 (@)= BY " (q) = @ = /321 (—1)/ g7 e =iy
(14)

where here and throughout the rest of the paper
§=0,12..,v—1 (1.5)

and n=0 (£1) corresponds to the NS (R) sector.
The ferionic representations of SM(2, 4v) characters are given in terms
of the function F'"")(¢q) defined for n=0, +1 as follows:

Of + Lfus

: q N,
F(g) = [ ] 1.6
’ ! nu.ng.;n‘.;o((])n: (q)n;q".(Q)n.. hty q ( )
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where the g-binomial coefficient is defined in a slightly unconventional way
as

l (q)l/(q)m(q)l—m lf O<m<1
[ ] _ if m=0,/< —1 (17)
mj, .

otherwise

The quadratic form Qf and linear form Lf, . are

2

Qf=%—m,N2+ Y N2 (1.8)
j=2
Lf,,=n2'+ Y N, (1.9)
2 I=v—ys"+1
with
Ny=3Y n; (1.10)
j=k

Once again #n=0 corresponds to the NS sector and n=+1 (—1)
corresponds to the first (second) representation for the Ramond sector,
which we will call R* (R~). We note in passing that the reason for the
existence of these two representations can be traced back to the fact that
zero modes of fermionic fields act nontrivially on the highest weight vectors.

The relation between the bosonic and fermionic forms depends on the
characters studied. We consider three separate cases:

1. For the Neveu-Schwarz sector we have

BrO%g)=F'r%4q) (1.11)
2. ForR*
1 (v, 1) twl) '
, s(F (q)+ Fli(q) for s #0
BUV(igy=42"" ¥ 1.12
<) {F{,‘”"(q) for s=0 ( )
3. ForR~™
B\ 7"(q) for s=v—1
FU—Ygy=4_r-" 1.13
o {B_‘v,‘"_”(q)+Bf‘.3’*+‘,"(q) for s'#v—1 (1.13)
or, equivalently,
v—1
Bf‘.:"_])((])= Z (_1)I+.\" F;v,—l)(q) (114)

1=y

In the Neveu-Schwarz sector the identities (1.11) are the generaliza-
tions to arbitrary v by Andrews'*® (for s’ =0) and Bressoud‘*!' of the v=2
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results due to Slater [Eqs. (34), (36) of ref 42] also known as the
Gollnitz-Gordon identities.**>* This relation between the Gollnitz—
Gordon identities and the Neveu-Schwarz sector of the SM(2, 4v) model 1s
well known.*”3® For the Ramond case R~ with s'=v—1 the identity
(1.13) is obtained from corollary 4.1 of ref. 40 with ¢ — o0, b= —¢ and
a=q and for the case R* with s'=0 the identity (1.12) is similarly
obtained from ref. 40 with the specialization ¢ — o, b= —1 and a=1.
These two special cases of the results of ref. 40 were also conjectured in ref.
38. For all other values of s' the results of (1.12) and (1.13) are new. In
general, the Ramond-sector Fermi forms should also be compared with the
result of Burge'*® [stated at the bottom of p.204 with the misprint
(g% q*)n,_, corrected to (¢> ¢°),,_,], where a free Fermi term is factored
out and the number of variables in the sum is reduced to v—1.
A direct proof of the equivalence of (1.12) with the result of ref. 44 does not
seem to be known.

The first purpose of this paper is to generalize both the bosonic and
the fermionic expressions from infinite series to polynomials. Indeed, we
will see that there are not one, but many distinct polynomials which
generalize (1.1) and (1.6). We will then prove Fermi/Bose identities for
these polynomials by obtaining recursion relations between several different
polynomials which are related to a given character. These polynomial iden-
tities will reduce to (1.11)-(1.13) when the degree of polynomials goes to
infinity. Our tools in this proof will be the use of the g-trinomial coefficients
of Andrews and Baxter**“® on the bosonic side and the methods of ref. 22
on the fermionic side.

By the very name the N=1 superconformal models have an inter-
pretation in terms of a fermion and a boson, and one aspect of this inter-
pretation is seen in the factorization of the bosonic form (1.1) into a free
fermionic factor (—¢*-*), and another factor which looks as if it is
obtained from a free boson by projecting out null states. Correspondingly,
there should be an interpretation of the Fermi form (1.6) which separates
the quasiparticles into one which represents the fermion and the rest which
represent what in the bosonic form was called the projected boson. One
such interpretation is instantly suggested by the form (1.6) itself, where m,
and n; appear in quite different ways. We will thus adopt the tentative
interpretation that m, is related to the fermion number operator F or
perhaps more accurately that (—1)™ is related to the chirality operator
(—1)f. With this identification we can consider the object

. —_ 1 my L Qf + Liny N7
Fomgy= ¥ (=D™q [ } (1.15)
q

myn..,i, 20 (q)nl (q)n; e (q)n‘. n1l
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and ask what relation it has with
Tr(—1)" exp(—H) (1.16)

In the NS sector this relation is straightforward. Replacing \/(_1 by
g in (1.11), we immediately note

FrOq)=F@0(e*q) = BL (™) (117)

Clearly, F {-9(q) is the T-modular transform of F{""*(¢) and therefore must
be equal to (1.16) according to ref. 49. In the Ramond sector we again find
that there are two distinct cases. For R* we define in analogy with (1.12)

1 v, (v.1) ’
~ WFYY(q)— F (g) for s#0
B(‘Y‘l) s’ =1 .
s (g)= {F( (g) for =0 (1.18)
Then since we prove in Section 5 that
FUlg)=1 (1.19)
we see that
- 0 for s #0
(v.1) —
By g) {1 for §'=0 (1.20)

which is equal to the Witten indices'*® as studied in ref. 49. We want to
emphasize that formulas (1.18) are not identities, but definitions. However,
in Section 5 we will find polynomial identities for s’ 0, which provide
extra motivation for the definitions above. For the case s'=0 an
appropriate polynomial identity is lacking. Our motivation in this case is
the analogy with (1.12) and the fact that we have an agreement with the
Witten index calculations of ref. 49.
For the Ramond case of R~ we define in analogy with (1.14)

v—1

Br=g)= Y F~"q) (1.21)
1=y
In Section 5 we find the bosonic companion of F*~"(g). Remarkably, it
1S not a constant, but rather is

1.22
I(v)(q) I.(\VL-I( ) fOl' s';év—l ( )

where

INg=1+7Y ¢7(¢"—q™) (1.23)

j=1
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is the false theta function introduced by Rogers'®" and extensively studied
by Andrews.®” Thus

By =(q)=1"(q) (1.24)
We show in Section 5 that
. s
lim IV (g)=1—— (1.25)
g—1 v

which suggests that it is possible to define for R~ a fractional analog of the
Witten index.

In Section 2 we state in detail the polynomial analogs of identities
(1.11)=(1.13) and the sets of recursion relations we will use to prove them.
In Section 3 we show that the fermionic polynomials satisfy these recursion
relations and in Section 4 we show this for the bosonic polynomials. In Sec-
tion 5 we discuss the Fermi forms F""*"(g) and the indices B{"*"(q). In
Section 6 we use the polynomial identities to study the dual relation which
exists between SM(2, 4v) and M(2v— 1, 4v) under the replacement ¢ —» g~ ".
Finally in Section 7 we discuss representation-theoretic consequences of
two partition identities due to Burge. We conclude with some remarks
about possible generalizations and open questions. Technical details con-
cerning ¢-trinomial coefficients are treated in the appendix.

2. POLYNOMIALS AND RECURSION RELATIONS

The starting point for proving Rogers—Ramanujan-type identities by
the method of ref 22 is identifying an (m, m)-system and an associated
counting problem. For the present case the appropriate (n, m)-system is as
follows:

mo4+m =YL+m —m,)—a,

ny+my=3L+m;+m;)—a, o)
(2.
ni+m=3m,_y+m,)—a  for 3<igsv-—1

n+m,=Y¥m,_ +m)—a,

where 1; and m, are integers and the components «; of the vector a are
either integers or half-integers. This system is closely related to the TBA
equations for the XXZ model [(3.9) of ref. 53] with anisotropy

2v—1
y=7r( v4v ) (2.2)
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In the language of our previous treatment*® of the M(p, p’) minimal
models, system (2.1) consists of two Takahashi zones with tadpoles at the
end of each zone. The principal difference between the present case and the
one considered in ref. 36 is the appearance of two inhomogeneous terms
L/2 in the first and second equations. The second inhomogeneous term
arises because N =1 superconformal models are derived from the spin-1
XXZ chain,® while N =0 models, investigated in ref. 36, are derived from
the spin-1/2 chain. The presence of the first term in (2.1) indicates that the
spin-1 XXZ model with y given by (2.2) is in the regime of strong
anisotropy. This inhomogeneous term is not expected to be present for any
other N=1 SM(p, p’) model with 2p’/(p' —p) = 3.

The (n, m)-system (2.1) describes v Fermi bands. Each band consists
of n;+m; consecutive integers with only n; distinct integers being occupied
by the n; quasiparticles. The remaining m; integers can be thought of as
holes. If one allows particles to move freely in each band (subject only to
fermionic exclusion rules), then one is naturally led to the following count-
ing problem:

FL)y= Z lll[ni+m,-] (2.3)

=20 i=1 n;

where the summation variables n;, m; are related by (2.1) with a fixed to be
zero for the time being. To calculate F{L), we use three simple conse-
quences of (2.1),

L=n+m,+ 3 (2i-3)n, (24)

m=m,+2 Y N, i=2 (2.5)
Jj=i+l

n+m,=N, (2.6)

along with the generating function technique (Section 2 of ref. 22) to obtain

F(LY=B(L) (2.7)

= /7L L
A= 2, = ((a),* o)) .

and N; was defined in (1.10).

where
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The trinomial coefficients (%), which appear in the above equation are

given by
1\* Lo/L\ .
<z+1+;> =y <> 4 (2.9)

i=—r \1

In what follows we will consider three different g-analogs of (2.7) asso-
ciated with the NS and R* sectors. We remark that these g-deformations
amount to prescribing the linear dispersion law for the quasiparticles
described above. We also point out that one can use (2.1) and (2.4) to find
a pictorial representation for quasiparticles in the spirit of ref 26. This
representation will be given elsewhere.

Motivated by (2.3), we now introduce the polynomial generalization
of the fermionic form F{""(q) of (1.6)-(1.9):

FELg)= X g2 T "] (210)
q

Dy i=1 n;
where the “finitization” parameter ' is
F=0,1,2,.,v=-2 (2.11)
and the variables n;, m; are related by (2.1) with the vector a defined by
a=a")4a""

(k) {( Oiv—t) for 0<kgv=2
at¥ =
' (

Oiv+9i1) for k=v—1
The domain of summation 2, . is best described in terms of n and m,
which are subject to the constraint

(2.12)

19— =

L=(n+a)+m,+ ) (2i—-3)n;+a,) (2.13)

i=2

All other variables are given by

nm;=N,—n, (2.14)

mi=m,+2 Z J—n+a), i=2,3,.,v—1 (2.15)

J=i+1

Keeping in mind that

neg. int.|
[ 0 ]q—l (2.16)
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we define 9, , for s’ 2r' as the union of the sets of solutions to (2.13)
satisfying

0 m, m,=20

I n,=0, m=-2, n,. n_ =20
2: nv=nv—l =0, m,= —4, My, n,_» ? 0 (217)
r'son,=n,_y=--=n,_,,,=0, m,=-=-2¢", n,n,_.20

and for s' <5’ the definition is the same as above with ' — s’
Using the asymptotic formula

A 1
li = 2.18
om [B} @ (2.18)

and the simple consequence of (2.1)

ni+m=L+m +n—2

J

(j—1D(n;+a)

iM-

-2 Z (i—Dn+a), i=2 (2.19)

J=i+1

along with (2.14), we establish relations between F!'2(L,q) and the
fermionic forms (1.6)

lim FU2(L, g)=F{"(q) (2.20)

Lo

which hold for all .

To write the bosonic polynomials one needs the g-analogs of the
trinomial coefficients (4), introduced in (2.9). Following Andrews and
Baxter, 'S’ we define

(L’A_"; ‘]> =Y t(L 4;j), neZ (2.21)

A j=0

and

R
T(L, 4; g'2) = gleL—m=44-m]2 (L’ 4 —An’ 1 ) (2.22)
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where

qj(j+A—n)(q)L

t(L, 4; j)= (2.23)
J (q)j((I)j-a—A (q)L—Zj—A
We note the elementary property
T(L, A;q"*)=T\L, —4;q"%) (2.24)
and remark that
5 (=D T (L, 4; ") for neven
T A, —g'?) = o 22
AL A =4 ) {T,,(L, 4;4"?) for nodd (%%

Consequently, T,(L, 4; ¢'”) is actually a polynomial in ¢ for n odd or for
n even and L+ A even, while for n even and L+ A4 odd, T, (L, 4, q'*)
contains only odd powers of ¢'”.

We then have the following definition of bosonic polynomials:

1. For the Neveu-Schwarz sector

BUOL )= Y, (—1) g7 *UT(L, 2y +5 1 q'?)
Jj=—=
+ To(L, 2vi+5" + 1475 ¢'?)) (2.26)

2. For the Ramond sector R*

By (L. q)

=3 X (=1 g7 AT (L 2vj+s =15 ¢')

j= -

+ T (L 2vj+s + 1+ q'?)
+ T#.I(L, 2\7+S' —r - 1, ql/.’!) + T_I(L, 2W~+S1 +l"; (]]/2)) (227)

3. For the Ramond sector R~

e r

BUyLgy= Y (=1 g7 ¥ (=1 TUL, 2+ +i; )
Jj=—= i= —r

(2.28)

where s'=0,1,2,..,v—1and r'=0,1, 2., v—2.
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Using the limiting formula of the appendix

afl=m/2 (1 —n)y2
(¢ ) ¥ ) if L—Aiseven

. > 2(q) .
Lh_l:l}, T,,(L, Aa (11/-) = ( _q(l —n)/?_)( 1_ (q(l —n)/?_)
’ = = if L—Aisodd
2(q)..
(2.29)
and noting the special case
lim T,(L, 4; q'") =D (2.30)
L—x (q)rf,

we find the relation between the polynomials BY-"(L, ¢) and the characters
(1.4)

lim BOY(L, ¢)= B (q)

o (2.31)
lim By (L. q)= lim B "L, q)=By*"(g)
L—x L=«

which holds for all ¢
We will prove the following polynomial identities which generalize the
character identities (1.11)-(1.13):

1. For NS
FrO(L, q) =B§,."."B'(L, q) (2.32)
2. ForR*t
1 (v, 1) (v 1) ’
s(FOS (L g+ FOL (L q) for & #0
BUINL g)y={2 """ res 2.33
" (L. q) {F:)'Ol (L, q) for §'=0 ( )
3. ForR™
B 7L, q) for s=v—1
FUoW(L g)y={" =1 234
o (B q) {B}.,‘:‘J_T”(L, @)+ Bl (L, q) for s'#v—1 ( )

We will prove these by showing that both FU"'N(L, ¢) and B{"(L, q)

.y
satisfy the following set of recursion relations for v>3 in the variables L
and r":

holLYy=h(L—1)+(g* =" =2 4 1) ho(L = 1)+ (g- ' = 1) ho(L —2)
h{L)=h,_(L—1)+h, (L—-1)
gt TR (L 1)+ (gF "' = 1)h(L—2) for 1<r<v—3
hy_s(LY=h,_{(L—=1)+qg*~"="2p _(L—1)4+q*"h,_(L—=2) (2.35)
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where
0 for NS
n=x1 for R* (2.36)
—1 for R~

Note that the first and the last equations follow from the middle equation
if one introduces & _,(L) and A, _,(L) satisfying

and h_(L)Y=hy(L) (2.37)

h,_(LYy=h,_5(L-1) (2.38)
For v =2 there is only the single equation
holL)=(1+g~=" ="y ho(L — 1) + g- ~"ho(L —2) (2.39°

Observe that the recursion relations in the sectors NS and R* are
independent of s'. The proof of the polynomial identities will be completed
by showing that (2.32)-(2.34) hold for L =0, 1. We record here the values
of the fermionic and bosonic forms at L =0, 1, computed directly from
(2.10) and (2.26)-(2.28). Notice that there is no dependence on v. The
fermionic forms are

F(\ n) 5r o
14+¢? if F=s=0

F(VO) ll/— if =S>1
1 if =s+lors=¢r+1
0 otherw1se
l+q if r=5=0 Q4m

if F=s21 h
Feb, =1 -
(= 1 if rr=s'+lors=r+1
0 otherwise
2 if =0
Fir 1 1 if r=s' 21 rr=s+lors=r+1

0 otherwise
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The bosonic forms are
B:-):B)( Os Q) = 5!"“\"
1447 if F=5=0

172 if "=53>1
B()V'g) 1, = 9 ) =
r.s ( 4) 1 lf "I=S’+lors’=r’+1
0 otherwise
1 if r=s5'=0
B:"v\l')(oa (]) = % if r=s' P lors =1 +1
0 otherwise
l+¢q if r=s5=0
l+ig if §=1,r=0 (2.41)
3+3q if Fr=s'zlors'=r+122
B(Y’.l:) 1, = 2 2 X =
r.s ( CI) 1 lf sl =0’ ’,r —
3 if F=s'+1220rs'=r"+2
0 otherwise
0 if r<s
B0, q) = !
r' ( (1) {(_l)r “+ lf I'IZS’
1 if I"=S'=00rs’=l.l+1
BUSD(Lg)={ (=1 if f>
0 otherwise

Equations (2.32)-(2.34) may be readily verified using these expressions.
The character identities (1.11)-(1.13) will follow from the L — co limit of
the polynomial identities (2.32)-(2.34) thanks to (2.20) and (2.31).

We close this presentation of results and methods with several
remarks. First, attention should be drawn to the presence in the fermionic
forms of solutions (2.17) to the system (2.1) with negative values for m,.
This is the first time such solutions have been explicitly encountered, but
it is expected that they will also be found in other nonunitary models such
as M(p, p') for p+1#p’. Second, we direct attention to the occurrence of
linear combinations in the R* sectors (2.33)-(2.34). Such linear combina-
tions have been seen in several other situations and are presumably a
generic feature of Fermi/Bose correspondences, although for the unitary
model M(p, p+ 1) the Bose and Fermi polynomials appear only singly. We
also remark on the crucial role played by the fact that there are many dif-
ferent polynomials which “finitize” the same fermionic character. This is a
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general feature which, for example, occurs in the proof of the identities of
the nonunitary M(p, p') minimal model.*®

Finally, we comment that the Fermi and Bose polynomials and the
corresponding recursion relations given here are not particularly unique.
As an example, for R* with s’ =0 we have two alternative representations

B (L, q)=BI1Y(L, q)=B2Y(L, q) (2.42)
where

BIV(L,g)= Y (—1Y(¢VT\(L, 2vj+r +1;4")

j=

+ gD EORT (L dyj 41 ') (243)

and

A v—1
BR(L.g)=Y (=1)/¢7| ¥ (=D T(L+1,2v+i;4")
j=—x i=r+1
+ Y (=lyerer Tl(L,2vj+i;q”2)] (2.44)

i=r+1

More generally, there are systems of polynomials which reduce to the
characters in the L — oo limit and satisfy slightly different systems of equa-
tions from the one given here. However, in all these cases the new polyno-
mials may be expressed as linear combinations of the polynomials given
above.

3. PROOF OF FERMIONIC RECURSION RELATIONS

We now turn to the proof that the fermionic sums of Section 2 defined
by (2.10) satisfy the recursion relations (2.35). The proof is based upon the
use of telescopic expansions of products of g¢-binomial coefficients
developed in ref. 22. In contrast to the many identities on g-trinomial coef-
ficients that we shall use in the proof of the bosonic identities, the only
identities we require for the proof of the fermionic recursion relations are
the elementary recursion relations for g-binomial coefficients

[n+m] =[n+m—1] +qm'n+m—l} (3.1)
n |, n 4 . n—1 |,

and

[n-i—m] =[n+m—l} +q"_n+m—lJ (32)
n |, n—-1 ], L n q
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We note that in order for these two identities to be used in our proofs
without exception we need to use the definition (1.7).

In order to give a compact proof we introduce the following symbolic
notation for fermionic sums:

P} v [71-+I17‘+P~:|
d(n A —_ $(n A) J J J
q =).9q (3.3)
{Q g _Zq: jl.:.[l "j+ Qj q
where
¢(n,A)=§(nf+N§)+ZN,2+A-n (3.4)

i=3

and 2 specifies the domain of summation variables m; and n;, which are
related by (2.1). In what follows we will use three domains 2, .., J,
2, ., where:

l. 2., was defined in Section 2 by (2.17).

2. 9, . is defined by (2.13)~(2.15) and

)

m,=-=-2r", n,_.=n,_.. =--=n,=0, n,n.,0,_,_, =20 (3.5)
3. 9, . is defined in the same way as &, . except that n,_,._; > —1
(whereas n,_,._, 20 for 2, ).
In terms of this notation we write the fermionic polynomials for
arbitrary A

F:’..\"(La Aa Q) = q‘ﬁ(n‘A) {g} (36)

Zy.s

To avoid bulky formulas we find it convenient to use the shorthand
notations

FAL)=F! (LA, q) (3.7)
#(n)=¢(n, A) (3.8)

throughout the rest of this section.
All the equations of (2.35) are special cases of the following set of
recursion relations for v > 3:

Fo(L)=F /(L= 1)+ (g" =+ 4+ 1) Fo(L — D)+ (¢" =P — 1) Fo(L—2)

(3.9)
FAL)=F,_(L—1)+F, (L—1)
+qtWRaE (L 1)+ (g~ A= 1) F.(L—2)
for 1<r'<v—3 (3.10)

822/83/5-6-2
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and

F,_o(L)=F,_y(L—1)+g"~V**F,_(L—1)+q"~'*/F,_(L-2)
(3.11)

where

B=A,+a (3.12)

v
a'=3% a¥'=0d,,_,0;,+30(v—s"<i)
j=i

and 8(a<b)=1 if a<b and 0 otherwise.
When v=2, Eq. (2.39) follows from the single equation

Fo(L)=(14¢-~ "2+ F(L—1) +qL_'+pF0(L—2) (3.13)
We will find that in order for (3.9)=(3.11) to hold, A, a*” should satisfy

Ao —A;=2a%), for 2<igv—1 (3.14)
As a consequence of (3.14) only A, and 4, may be specified independent

of the inhomogeneous vector a**".
Making use of (1.8), (1.9), (3.12), and

m, =N,—n, (3.15)
one verifies that for A defined by (3.14) with

A1= _’_1 A2=§+5.r‘.v—]ﬂ "=0’ il (316)

a—n/2, §—-0, ¢(n) > Of + Lf, , and therefore the fermionic forms (3.6)
and recursion relations (3.9)-(3.11) reduce to (2.10) and (2.35).

Let us denote the set of solutions of (2.1) with the inhomogeneous
vector (2.12) as {n,m}, . .. Then, if we define vectors e, and E,, by

k
()i=d,, E=— Z €; (3.17)

i=1
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we may use (2.1) to verify the following relations:

{n’ m}L—l,r'— s — {n’ m} L.r.s + {05 EZ.v—r'}

{n,m}, . o,={nm}, . .+{—e, —e]
{n, m}L—Z,r'.J' = {n, m} Lo'.s + { —e,—e,, 0}
{ll, m} L-2ry = {I’I, m} L.r.s (3.18)

+{e,_,_,—e,_,,2E,,_,._,} for v—r'=3

{n* m} L—1r+1s5= {n’ m} Lr.s

+{e,_,_1—¢e_.Es,__1} for v—r'2=3

Furthermore, if we recall

v

L=n+a+ ) (2i-3)(n,+a)+m,

i=

L=nl+N7 m')+£i (319)

(]

m;=2 Z (N,+d,)+m,, i=2

I=i+1
and use (3.14), we may verify the following identities for ¢(n, A):
d(n)+n,+my=d(n—e,)) +L—14a
¢p(n)+my=d(n—e,—e))+L—-1+p

(3.20)
[¢+m](n—e_,+e+e,_,._,—e,_,)
=¢(m)+m,_,—1 for 3<igsv—r
with
5(") Eqs(n-*_ev—r'—l _ev—r')
Then from (3.18) and (3.20) we obtain the following expressions:
0
FAL)=q"™ { } (3.21)
O Zr.s
E” v—r p
Fo_(L=1)=¢*" { - } — B (3.22)
O 2.5

qE— R e ([ )= gtm+m+m { »—} (3.23)
Ly ¢
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E
qL_l+ﬂF,r(L—2)=q"h(")+"'3 {EL—} (3.24)
1.2) &y
y 2E7 v—r — v—r'—1 7 Cy—p
F,,(L—z)=q¢‘"’{ e } (325)
€17 € _p Ly

El.v—r’—l +ev—r'— 1— €y

F,.,+,(L—1)=q$‘"‘{ } LB (3.26)
(73

s

eu—r’—l _ev—r’

where

B=q"™0(s' > ") {EZ-"""—‘} (3.27)
0 s
and 6(s' > r')=11f s’ > ' and 0 otherwise. We note that the term £ arises
because in general 2. £ D, .
The method we use to prove (3.9)—(3.11) is the telescopic expansion
technique of ref. 22, which is based on the following two identities, which
follow from (3.1):

1. Telescopic expansion from right to left,

P P+E,k} £ .+,,._Q{P+E,,}
= R mi+ Fi— Qi ' (3.28)
{Q} { Q E‘,q Q-—e¢;
2. Telescopic expansion from left to right,
P P+E[/\} k i+ Pi— {P+E1k}
= R mit+ Pim Qi : (3.29)
{Q} { Q JTE1 Q-—e,

The proof of (3.9) will follow from (3.10) with the definition F_,(L)=
Fo(L). To prove (3.10), we begin by applying the right-to-left telescopic
expansion (3.28) to F,(L) to obtain

E . v—r' E
F.: L = $(n) 2w @(n) +ny 2.7 330
, ( ) 1 { 0 }9,',,« * /gz 1 {—e,}gm, ( )

and then further expand the term in the sum with /=2 using (3.2) to get

F.(L)= q¢(n) {E’_’.(;—r'} -7

Zps
+q¢(n)+m+mg {El.z +q¢(nj+mg E1.2 +Z (331)
€ ) g, Eiso,.,
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where

v—r E_,
7= Z q¢(n)+m/ { ;I} + # (3.32)
S s

Then making use of (3.22)—(3.24), we find
FALY—F,_(L—1)—gt="2%F (L _1)—gt—"*PF(L—2)=2Z (3.33)

We then change the summation variables in the /th term in the expansion
of Z as

n—-n—e,_,+e+e,_,._,—e, . for 3<igv—r (3.34)

where we note that this change depends on / and sends the domain %, .
to &, .. Thus, making use of (3.20), we obtain

- — 1
Z=‘ {Z‘ q‘;(n)+m/—l {EZ,\'—I"——I+El.v—r’—l+e|'—r’—l—ev-r’} +%
173

=2 —€ +ev—r"— —€, L7 3
= ’ ' " (335)

To complete the proof we expand F, , (L—1)—# given by (3.26)
using the left-to-right telescopic expansion (3.29) as

Fror(L=1)
=qJZln) EZ:\’—r’—l +ev—r’—] _ev—r’} +%
€ _pr_1—€C_p [y
¢(n) 2E"l—r—l+e\—l —1 ev—r’}
\ —r ev—r’ Q;:__“
y—r' -1
+ Z q$‘n)+ml—l {Ez"'_"'_l"'E/_.,_,-'_]+ev..""'l_e"_.r’} + %
= _el+ev——r'—l_ev—r’ o

"(3.36)

Thus, comparing the right-hand side of (3.36) with (3.25) and (3.35),
we obtain
F. (L=1)-F(L-2)=2 (3.37)

and hence the desired result (3.10) follows from comparing (3.33) and
(3.37).



814 Berkovich et al.

It remains to prove (3.11). To do this we expand F,_,(L) as

E E
F,_(L)=qg*™ 2.2 $(n}+m +nm L2
vh'( ) 1 { 0 }9.._2,s'+q {_e'—’ Doy
+q¢(n)+mz {El'z} (3.38)
E],z D2y

from which (3.11) follows upon using (3.22)-(3.24).

The proof of Eq. (3.13) for v=2 is completely analogous to the proof
of (3.11) and will be omitted.

We close this section with a few remarks. The major new feature of
this derivation which did not occur in ref. 22 is the occurrence of the extra
terms (2.17) in the allowed range of solutions 2, . of the constraint equa-
tions (2.1). These terms are forced upon us by the necessity of using the
recursion relation (3.1) for the case m=n=0 and is what requires us to
keep track of the three different domains of definition 9, ., 2, ., and 9, .
and the resulting boundary terms 4. This complicates the presentation, but
since none of these terms makes an explicit contribution to the equations,
we advise the reader to ignore them on first reading. Clearly, the method
used can be extended to the general case where 4 and A are subject only
to (3.14). We plan to discuss this in a separate publication.

4. PROOF OF BOSONIC RECURSION RELATIONS

Our proof that the bosonic forms (2.26)-(2.28) satisfy the recursion
relations (2.35) relies on various identities satisfied by the g-trinomial coef-
ficients. Some of these have appeared previously in the literature““*® and
some occur in this proof for the first time. For clarity we will first list all
the identities we shall require and relegate the proofs of the new ones to the
appendix. We will then use these identities to verify the bosonic form of the
recursion relations. The three distinct cases will be considered in separate
subsections for v>=3. The special case v=2 is easily treated by the same
methods, but the proof will be omitted.

4.1. ldentities of g-Trinomials

In the course of our proofs we will need several identities satisfied by
the g-trinomials. These identities are of three types:
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A. Pascal triangle identities which are nontrivial for g =1:
T_(L, 4;9"?)
=T_(L—-1,4+1;,¢'"")+T_(L—1,4—1; 47
+q" U TPT_ (L1, 4;9") +(¢" T = 1) T_(L—2,4;¢9'7)
(4.1)
T\(L, 4;¢'%) —~ T(L~1, 4;¢'?)
=q(L+A)/?.T0(L_ 1, A + 1, ql/l) +q(L—A)/2T0(L_ 1’ A— 1’ ql/z) (42)
B. Identities derivable from the Pascal triangle identities (for ¢ =1):
To(L, 4;9'%) —To(L—1, A~ 1;4'7)
=gtV [T(L, A+ 1; ") —To(L—1, A +2;¢"%)] (4.3)
T\(L, 4;¢")—Ty(L, A+ 1;4'7)
=qE=RPT(L—1,4—1;q'?)—q'E+4+DPT(L—1, A +2; ¢'?)
(4.4)
T(L+1,4;q")+T\(L, 4;q¢'?)
=T_(L,A+1,q"")+T_(L,A—1;,4"*)+2T_\(L, 4;¢'?) (45)
C. Identities which become tautologies when g = I:
TW(L, 4;9'*) = T(L, A+1;¢'?)
=q'" " IPTL, 4;9') —q =4 PT(L, A+ 1;¢')  (46)
T_(L, 49" ~T_(L-1,41£1;q'?)
=q"FFPTYL, 4, ¢'?) —q"T_(L—1, 4% 1; ¢"7) (4.7)
gEEIRTY(L, 4; ')~ Ti(L, 4; q'?)
=(¢"=DIT_(L—1,4,¢")+T_(L-1,4F1;¢'*)] (48)
To(L, 4;¢'*) = To(L, A +2;¢'7)
=g E=PT (L, 4; ¢'?)— ¢t 2+ DPT (L, A+ 2; ¢'7) (4.9)

The identities (4.1) with n =0 and (4.3) are needed for the proof in the
NS sector. Identity (4.1) is proven in the appendix and (4.3) follows by
combining Eqgs. (2.26) and (2.29) of ref. 46.

The identity (4.1) with n= —1 and identities (4.2), (4.4), and (4.6) are
needed for the R~ Ramond sector. Identity (4.2) is Eq. (2.16) of ref. 46,
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identity (4.6) is Eq. (2.20) of ref. 46, and identity (4.4) follows from com-
bining (4.3) and (4.6).

The identity (4.1) with n=1 and (4.7)-(4.9) are needed for the R+
Ramond sector. Identity (4.7) is (2.23) of ref. 46 with B=A + 1, identity
(4.8) is obtained by combining (2.23) and (2.24) of ref 46 both with
B=A+1, and identity (4.9) is proven in the appendix. Finally, identity
(4.5) is needed to establish an R*-R~ connection and to derive (1.22).
Identity (4.5) is also proven in the appendix.

4.2. Proof of the Generic Equations for Ali Sectors

We separate the recursion relations (2.35) into two classes: the equa-
tions for hy,..., 1, _,, which we call generic, and the last equation of (2.35)
[or equivalently (2.38)], which we call the closing equation. The proof of
the generic equations is identical for the three separate cases of NS and R*.
In all cases the generic equation follows immediately from the identity (4.1)
and the fact that the bosonic polynomials (2.26)~(2.28) are linear combina-
tions of T_, with n given by (2.36). The identity (4.1) guarantees that the
generic recursion relation holds for each term separately in the sum over j.
Consequently, these generic equations do not determine the factors

(_1)/ qvj2+(s’+(1—|n|)/2)j

which appear in (2.26)-(2.28). These factors are determined by the closing
equation and for this the three cases need to be considered separately.

To keep notations manageable we will write T,(L, A) instead of
T,(L, A; q"%) throughout the rest of this paper.

4.3. Proof of the Closing Equation for the
Neveu-Schwarz Sector

To verify the closing equation (2.38) for the NS bosonic polynomials
(2.26) we consider

Ins(L)= B} (L, q) =B (L—1,q) (4.10)

v— 1,8 v—2,8

and substitute (2.26) to find

Ins(L) = i (_l)fq‘y'2+(s'+1/z)j

Jj=—c
X(To(L, 2vi+s" —v+ 1)+ To(L, 2vi+ 5 +v)
—To(L—=1,2vj 45 —v+2)—To(L—1,2vj+5 +v~—1)) (4.11)



N=1 Superconformal Model SM(2, 4v) 817

This does not vanish term by term under the summation sign. However, if
we first send j—» —j in the first and third terms inside of (.--) and use
(2.24), we have

Ins(L)= Y (=1)¢”

Jj=—o

X (g VI T(L, 2vj+v+5')—To(L—1,2vj+ v+ —1)]

+g W FVRIITYL, 2vj+v—5 —1)—To(L—1,2vj+v—s" —2)])
(4.12)

In this sum the terms with j and —j—1 cancel by use of (4.3). Thus we
have completed the verification that the NS bosonic polynomials (2.26)
satisfy the recursion relations (2.35) with n=0.

4.4. Proof of the Closing Equation for the R~ Ramond Sector

To verify the closing equation (2.38) for the R~ polynomials (2.28) we
consider

In-(Ly=B""7'NL,q)— B 5'N(L—1,¢q) (4.13)

v—1,5

and substitute (2.28) to find

IR‘(L) = Z (_])!' qw'l-;—s'j

J

o

v—1
x< Yo (=1 T, 2v 4+ 5"+ i)
i=—(v—=1)

v—2

- ) (—1)"‘2“Tl(L—1,2\g'+s'+i)) (4.14)

i=—(v—2)

We now transform the summand of (4.14) for each j by adding and sub-
tracting T\(L—1, 2vj+s — 1 +v) and regrouping terms to obtain

S [Ty(L,2vj+5 +1—v+2i) = Ty(L, 20 +5 +2 —v+2i)]

i=0
+[T(L,2v+s —14v)—T{(L—1,2yj+5 —1+v)]

v—2

— Y [TW(L—=1,2vj+s +2—v+2i)
i=0

—Ty(L—1,2vj+5 +3—v+2i)] (4.15)
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Then we use (4.4) on the first line, (4.2) on the second line, and (4.6) on
the third line and note that all terms cancel in pairs except

gt (gRa ST L 1, v 45" 4 v)

+q = RIHEIRT(L -1, 2y + 5 — V) (4.16)

Thus we have
oD

IR_(L)zq(L—1+\')/2 z (_l)quj3+.\"j

j=—
x [qPY+HORPT(L—1,2vji+5 +v)

F g EORT (L ] 2y 45 —v)] (4.17)

which is seen to vanish if we replace j by j+ 1 in the second of two terms
in {---]. Thus we have completed the verification that the R~ bosonic
polynomials (2.28) satisfy the recursion relations (2.35) with n= —1.

4.5. Proof of the Closing Equation for the R* Ramond Sector,
R*-R~ Relations

To verify the closing equation (2.38) for the R* polynomials (2.27) we
consider

Ix+(LY=B\"" (L, q)—B\"") (L—1,q) (4.18)

v— 1.5
and substitute (2.27) to find

I«(Ly= Y (=1 @7 +([T_\(L,2vj+5 —v+1)

J=—x

—T_(L—1,2vj+s" —v+2)]

+[T_ (L 2vi+s+v)—T_(L—1,2vi+s5 +v—1)]
+[(T_(L2vj+5 —v)—T_(L—1,2vi+5 —v+1)]

+[T_(L,2vi+s'+v—1)—T_(L—-1,2vi+5 +v—-2)]) (419)
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We now use (4.7) on each of the four terms inside of (---) to obtain after
regrouping

Ieo(L)= Y (=1)/ g7+

j=—e

x ([qUe= & —v+ 1+ 2DIRT (L, 2yj+5' — v+ 1)

+ qUEr Ay =1+ 2R T (L, 2yj+ 5" +v—1)]

—q [ T_(L—1,20+5 —v+2)+T_(L— 1,2y +5' —v+1)]
— g [T_(L—=1,20+5 +v—1)+T_(L—1,2vj+5 +v—2)]
4 [qEHS R 2IRT L v+ s +v)

+ gl =y 2DIRT (L, 2vj + 5" —v)]) (4.20)

The expression in the last set of the square brackets is seen to vanish if we
take j — j+ 1 in the second of the two terms in [..-]. Then, if we multiply
both sides of (4.20) by (¢* — 1) and use (4.8) on the contents of the second
and third sets of square brackets, we obtain

(¢" = 1) In+(L)

— Z qvj3+s’_/'(_q(L+.\"+v—]+2vj)/2T0(L’ 2Vj+S’ + V—l)
Jj= -
_q[L—(.\"—v+ I +2|y‘)]/2T0(L, 2Vj+S’ — v+ 1)

+q T (L, 2vj+s5" +v—1)+q*T\(L, 2vj+5' —v+1)) (421)
We now let j—j—1 in the first and third terms in (---) to obtain the

expression

(q _1 IR+(L Z (—l v/(j—l)+:’j+(L+\'—.)"—l)/2

x(TO(L, v+ —v—1)=Ty(L,s'—v+1)

— q[L—(.\-'—v— 1 +2vj)]/1T|(L, 2V_]+ s—v— 1)

+ gl IR 2IAT (L, 2yj 45" — v+ 1)) (422)
which vanishes term by term under the summation sign due to (4.9). Thus

we have completed the verification that the R * bosonic polynomials (2.27)
satisfy the recursion relations (2.35) with n=1.
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We conclude this section by noting the following intriguing identities:

Feo(L+1,q) +F7 (L, q) =20 BY (L, )+ BUY, (L)) s #v—1
2

FOTNL+1, g)+ FU (L, ) = 2B (L. ) (423)

r'ov—1 w—1 w—1

which can be easily proven with the help of (2.34) and (4.5).
These identities reveal the intimate connection between R* and R~
representations of the Ramond sector characters.

5. THE INDICES

In this section we turn to the objects F{""'(¢) and B'""'(q) and prove
the properties discussed in the introduction. To this end we introduce the
polynomials F{"2(L, q) as

FEL g = 3 (1 g2 T[]
q

Gy J=1 n;

(5.1)
n=0, +1, r=0,1,.,v=2

where Qf, Lf, .. and &, . are defined in (1.8), (1.9), and (2.17). One can
easily establish

lim FU2(L, g)=F"(q) (5.2)
L— o
and
FU(L, q)=F (L, ge*™) (5.3)

which hold for all .
It is straightforward to repeat the analysis carried out in Sections 3
and 4 to prove recursion relations for F{)(L, q):

Fo(L, qy=Fyo(L—1, @)+ (1 —g-= " =m2) Fo(L —1, q)

g =D FR(L—-2.9) (5.4)
FUm(L, qy=F0" (L—1, @)+ Fr" (L-1,q)

—gt T PFL =1, )

+(gF ' =) FU(L—-2,q) for 1<r'<v=3 (55)
Fy (L q)=F) (L=1,9)—¢" =" 7"PFP (L =1, q)

+q" 7 FU (L=2,q) (5.6)
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with v > 3,
FEML, q)=(1—q" " =2y FRI(L—1,q) + g~ 'FE(L—2,q9)  (57)

and identities

FUONL, q)=BO(L, q) (5.8)
BU L, q)=F" (L, q)—FD_(L,q), 5 #0 (5.9)
where
Ef’t\O’)(L‘ (]) — ( —1 )L+.\~' +r 2 q|y'2+<.v'+ l/2)j( TO(L, 2Vj+ s — ’,/)
Jj= =
—To(L,2vj+s"+14+1")) (5.10)
and
Efv‘l )(L, g =(—1 )L+r'+x' +1 Z q|y'3+.v'j
Jj=—=

x{(T_|(L,2vi+s" +r +1)—=T_ (L, 2vj+s" — ")
+T_(L,2vi+s +r)—T_|(L,2vj+s —r' —1})) (5.11)

Identity (5.10) could have been proven directly by simply replacing ¢'/
with —¢'” in (2.32) and then using (2.25) and (5.3). To avoid confusion
we want to stress that B}"“"(q) defined by (1.20) is not the L — oo limit of
B (L, g).

If we let L — oo in (5.9) and apply the limiting formulas (2.29) with
n=1 and (5.2), we obtain

Foyhg) =Filig), s #0 (5.12)
ie., Fl""(q) does not depend on s'. In fact,
Firig =1 (5.13)

as stated in- the introduction, Eq.(1.19). To see this, we rearrange
{5.4)-(5.7) in the following fashion (suppressing the argument ¢ for com-
pactness):

1. Forv=2

FEL) +q" FENL—1)=FZ(L—1)+ ¢~ 'FEI(L-2) (5.14)
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2. Forvz=3
Feo(L)+ g Fy(L—1)
=FENL—D)+FU (L -1 +(¢" " = 1) FE (L -2)

&

FU (L) + gtFe (L -1)~F!) (L—1) (5.15)
=F0D (L-D+(g" "= FO(L-2) for 1<r<v-3
Fri ALy + ¢ FOL (L= F (L1
=g"7'F (L-2)

We add together the v— 1 equations to find

v—2 v—3

Y (FUML g+ g FUr X L—-L )] = Y FXL—1,¢)
r =0 r=0
= ¥ [FUI(L-1,q)+q" 'FrIL—2,9)]
=0
v—3 o
-2 Fr(L-2,9) (5.16)
r=0

The above is of the form I{L)=IL —1). Thus both sides are separately
equal to a constant independent of L which by evaluation for small L is
found to be 1, and hence

v—2 v—3
Y [FUL ) +q " Fe(L—1,q)]— ), Fr(L—1,9)=1 (5.17)
=0 r'=0
Taking (5.2) into account, we may send L — oo in (5.17) to derive
FOY(g)= lim FN(L, q)=1 (5.18)
L— <
which proves (1.19) of the introduction.
When v=2 there is yet another bosonic companion of F{:)(L, g),

s'=0, 1. Indeed, in this case (5.17) becomes a simple first-order difference
equation

FEOL, @)+ ¢ FE(L—1,9)=1 (5.19)
By direct evaluation, one finds boundary conditions for (5.19)

Fehs, q)=1, =01 (5.20)
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It is now trivial to solve (5.19) and (5.20) to obtain

L—s
FEL )= 3 (=1)/ gv==tr (5:21)

j=0

From this the limit (5.18) is immediate.
Next let us consider F{% 'L, ), 5' =0, 1. If we define

XAL q)=F§ "L, q)-F§ (L—1,q) (5.22)

then the second-order difference equation (5.7) can be rewritten in the first-
order form

XAL,q)= —q""'XAL~1,q) (5.23)
This is easily solved to get
Xo(L,q)=(=1)F""g"~ 12X (1, q) (5.24)
where X(1, q)= —X,(1, g) = —1. Then, since
Fm0,)=Fg7"(1, ) =1 (5.25)

we obtain from (5.22) and (5.24)

FR— UL g =14 Y (=1 g/

M TP

(5.26)
FE UL g)=1=}% (=1)gM~""
j=2
From this we note that
33 L, q)+F" (L, q)=1 (5.27)

The equality with the false theta functions (1.22) is easily established by
letting L — oo in (5.26) and (5.27).
In fact, Eq. (5.27) can be generalized to

v—1
I=3 Firo"Lg) (5.28)

=0

To prove (5.28) it is sufficient to notice that a constant is always a solution
to (5.4)-(5.6) with n= —1 and that (5.28) holds true for L =0, 1. Letting
L — o0 in (5.28), one recovers (1.21), (1.24) for s' =0.
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To verify (1.21)—(1.24) in general, we will need the following analog of
(4.23):
FOrL+1,q)—F L, q)=B"Y, (L, q)—BrI(L, q) (529)

which is proven by observing that the lhs and rhs satisfy the same equa-
tions (5.4), (5.5) with n=1 and that (5.29) holds true for L=0, 1. Then we
use (5.29) along with

FiroY(L=0,9)=06,, (5.30)
to find the bosonic companion of Fi"7Y(L, ¢),
L
ForoL+1,9)=Y {BoY (L) —BrY(Lg)} +6,,  (531)
1=0
To proceed further, we set ' =0 and send L to infinity in (5.31) and use
(5.11) to find
F=Y(g)= lim F 'L, q)
L— x>
= ( _ 1 ).s-' { Z qvj3+s'jg(2vj+sr’ q)

i=—=

+ Z q‘”'2+““'+"/g(2vj+s'+1,q)}+50‘s. (5.32)

=

where

(=D [T_ ol j+1)=T_(,,j=1)] (5.33)

[Nagh

glj, q)=
!

The function g(j, g) has the two important properties:
g—jq)=-¢glj,q; JeZ (5.34)
and
g +elj+1,9)=—0b;0; JjeZ, j=0 (5.35)

Formula (5.34) is a simple consequence of (2.24) and formula (5.35) is
proven in the appendix. Clearly, Egs. (5.34) and (5.35) specify g(J, g)
uniquely as

(=1)sign(j),  j#0

0, =0 (5.36)

g(j, g) ={



N=1 Superconformal Model SM(2, 4v) 825

Combining (5.36) and (5.32), we obtain
FrYg) =I(q) =10 () (537)

with 7.'(g) defined by (1.23). Thus, we completed the proof of (1.22).

To the best of our knowledge, the g-trinomial representation (5.31) of
the “truncated” false theta function has never appeared in the literature
before.

We conclude this section with a derivation of the ¢ — 1~ limit (1.25)
of the false theta function (1.23), I{)(¢), given in the introduction. To this
end we rewrite the sum in (1.23) as

IYg) =1+ i g—v-\lm(e—s'.\-m(lln rm'/l_es'x(j)mnqn‘f-’) (5.38)
i=1
where
x(j)=j(|In g)'? (5.39)

As g — 17, the rhs of (5.38) is dominated by large j terms and, as a result,
can be approximated by an integral

* dx 2 oy 12 - 1”
&2 ~1 —wx, —s'x{|ln g} _ _s'x(|Ing]) 5.40
W)~ 1 | e e ) (540)
Expanding
g In gl _ gextling'® — _25'x(In ¢|)"2 + O(In q) (5.41)

we find the limit

lim 7{(q)=1-2¢ Iw xe ™" dx
0

g—1

!’

=1-Z (542)

\4

The formula above is the result (1.25) we set out to obtain.

6. DUALITY g—>q~'

The bosonic and fermionic polynomials given in Section 2 reduce to
the characters of the SM(2, 4v) superconformal model as L — co when

822/83/5-6-3
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g < 1. However, when ¢ > 1 it is also possible to take the L — oo limit after
removing a suitable power g. We show here that this leads to the linear
combinations of the characters of the minimal model M{2v— 1, 4v), where
we recall that for all models M(p, p’) the bosonic form of the characters
(normalized to one at g=0) is"*>

x5 gy =240 ()

= 1 i (qj(jpp’+m‘—rp)_qu'ﬂ+r)up‘+x)) (6.1)

We study the region ¢ > I by making the dual transformation ¢ — ¢!

in the bosonic/fermionic polynomials. It is worth mentioning that this
operation has a direct physical meaning: it transforms particles into holes
and vice versa.

We use the definition (2.22) to express the dual polynomials in terms
Of (L.A; n:r/)_l:

1. In NS as
g BINL g ™)

PR Y

J=—

g <q(lvj+.\"—r')z/2 (L, 2xy:+s” — r:; q>
2vj+ 5 —r 2

+q(:‘y+.v'+l+r'»3/z <L’ yi+s'+r+ 1 ‘]> )

2vi+r +1
2. In R~ as

qL(L —1 )/ZB:_:?X’—] ’(L, q -1 )

= Z (_l)jq—-:il—x’j
j=—

-
x Z (_1)l"+iq(2|j+.\"+i)(2|y'+.\"+i—1)/2<

i= —r

L, 2vj+s’+i—1;q>
2Vj+5’+i 2
(6.3)
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3. InR* as

L(L+1)/2 .1 —1
gHEY PRI, g7)

1 i N 2
5 X (mygY

—oy

j=
% <q(2vj+s’—r'—I)(2vj+.\"—l")/2 <L’ 2vj+s’ —I"; q>
2vi+s' —r'—1/,

L, 2vj+s’—r’+1;q> ]

+q iy —r
4 ( vj+ s —r

+ q(2vj+s’ + N2+ 5 1)/2 [(

e L 2vj+s'+r'+2;q
v+ +r+1 3 ’ 6.4
+4 < 2vi+s +r +1 )J) (64)

L,2vj+s’+r’+1;q>
vji+5 +r 5

In this form we may now let L —» co by using two limiting results of
ref. 46,

L. A:
lim < : ’q> _ ! (6.5)

Lo A

lim <L’A_1;"> L
L—w A 2_ (q)m

and the asymptotic formula, which can be derived from (6.5) and (2.23) of

ref. 46,
. L, A+1l;q L,A+2;q> 1
1 A+1 —_ 7

to obtain for n=0, +1

(6.6)

(1+6(n>0)) lim g“**"B(L,q~")

- o

=N = — |n])/2.,(2v—1.4v)
=q Xv—r'—l,Zv—-Z\"—l+|n|(q)

+ q(s’+r'+ INs"+7r +1— MIVZX(;Z-{‘-’j l_’.j&:)‘) 14 l(q) (68)

Equation (6.8) demonstrates that in the limit L — oo the model
SM(2, 4v) is related to the model M(2v — 1, 4v) by the dual transformation
q— 1/q. This latter nonunitary minimal model is a special case of the
models M(p, p') studied in ref 36. It is of interest to note that while the
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dual polynomials (6.2)-(6.4) yield M(2v—1,4v) characters in the limit
L — oo, the dual polynomials themselves are not the same as those of refs.
56 and 36. This emphasizes the fact that there are many different polyno-
mial expressions which yield the same character in the L — co limit. Indeed
the polynomials of this paper and those of ref. 36 must be different because
in ref. 36 the M(2v— 1, 4v) polynomials transform into the M(2v+1, 4v)
polynomials, while the polynomials (6.2)—(6.4) transform into SM(2, 4v)
ones.
Curiously enough, the SM(2, 8) model is, in fact, self-dual:

lim q“2BENL, ¢=") = ¢ P35 2(@) + "2 185 50(9)

L—
qalzx(lz38)2\(q) (6.9)
2
L(L+l)/ZB(7 +1) -1 — (.r—l)/?. {3.8) (’%8)
ngan (L,g™") 3117 A Ta () +ax5a 50(q)
= gL 4 g8,0) 12 5(g) (610)
3_|__1 5.0

where s'=0, 1.
To complete the study of g-duality we transform the fermionic sums

using the relation
[l1+n1] =q_m"[n+m] 6.11)
m g1 m g

We then obtain fermionic sums with a quadratic form matrix of the type
discussed in ref. 36. In particular, we consider the v x v matrix B defined by
its matrix elements

2 for j=k=1
Ok for j=1,2<k<v
(B),x,=406,, for k=12<j<v (6.12)
%5j.25k.2+5 5jk+l 15j,k—l_%5j_v6k,v
otherwise

We also define

' = (ny, My, M3y ) (6.13)
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and the (v — 1)-dimensional vector v*¥

(v, =kO(1<i<v—k—1)+(v—1-0)0k>0)0(v—k—1<i<v—1)
(6.14)

where k=0, 1,..., v— 1. Then, the g-duality transform of the fermionic poly-
nomials (2.10) can be expressed as

L

qL1L+n)/ZFf):‘;5)(L’ q—1)= Z qtl»',,(ﬁl.r’,.\") l_[ |:I'l,'+”7i:| (615)
q

Py =1L M

where n, 9, . are given by (2.36) and (2.17) and & (i, ¥, s') is defined as

@, (m, v, s')=imBm+ L,(, s')+ C,(r', s') (6.16)
2Ln(ﬁ19 SI) =ﬁ;lv_ﬁ;lv—x’ +m15s’,v—l + (2"‘711 +n712)(l’l + 5s’,v—l) (617)
4C(r,s')=5"—r"+(1+2n)d,,_, (6.18)

We now let L — oo to obtain the following:

11m qL(L+")/2F:,.V.‘;f)(L, q—l)

L—w

min(r'.s"]

=¥ T &

k=0 m-restrictions{ k] (q)'ﬁl (q) 1

v _B) i), —al — g
x{é,m_2+0(v—3>k)n (1 =B)m), —a;" —a, ] } (6.19)
i=3 ¢.q

m.

i

@y, 8"

where the inhomogeneous vectors a'*) and a!” are given by (2.12); the
restrictions[ k] on the summation variables m are

iy —i,= (v v, (mod2);  i=2,3,.,v—k—1; k#v—2(6.20)
i, = —20k—j);  j=0,1,2,.,k#0 (6.21)

and the symbol [3],., in (6.19) stands for the conventional g-binomial
coefficient (i.e., it vanishes if either 4 or B takes on negative values).
Remarkably, it turns out that the formula (6.19) can be simplified as

hm qL(L+n)/2F(’v,13)(L q-l)

L— o s ’

@y, r',s')

g4
f-restrictions[0] ( q )'711 ( q ) 112

* [((1-B)m),—a{” —al"
x [ [ .
! q

i=3

(6.22)
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Combining results (6.15), (6.22), and (2.32)-(2.34), one derives the
following Fermi/Bose M{(2v — 1, 4v) character identities:

lim ¢“”Fr(L, g7

Lo >
¢ — 22 (2v — 1.4y S Ar 102 2v— 1.4
=g T B T @) g BT e {g) (6.23)
: L(L—1)/2 r, — 1 -1
Lllm gt e REY TN, g7
-

—F )= =22, (2v—1.4 e - 2v—1.4v
= g IS SRR S () 4 g = D2 L ) (6.24)

lim qL(L—li/lF()'.J—l)(L’ q—l)

L—
— qm' — s —r =1 )/ZX(VZ_VPI_.TYZ)V_ Zs'(q) + q(x' +r)S +r 4+ )/zl(ull r—'.lz.“’l:)lr‘(q)
+ q(.s" —r s = )/2X£:2X '—' L‘l“’%v g 2(q)
R :‘12‘:1:)2‘\., _5(q), s #v—1 (6.25)
lim gt et PR, g7+ FRY s (La ™)
= q(x' + RS+ ] )/?.X(VZ_'\_' ;‘1?:;11)2"!((1)
Hgt Ty I () (6.26)

Equations (6.23) and (6.24) are consistent with the results obtained in
ref. 36 whenever 1’ or s’ is equal to 0. In the general case identities (6.23)
and (6.24) are new. They demonstrate how two quantum groups describing
braiding properties of the conformal blocks “interact” on the character
level. Identities (6.25) and (6.26) are also new. It is of interest to ascertain
whether or not these new identities can be obtained by means of the Bailey
lattice technique.*7-2%

We conclude this section with the following observation. It appears
that there exist RG flows connecting dual regimes of the same model. In
particular, it was proposed in ref 58 that dual regimes Z,_, and
M(v, v+ 1) of the ABF model®® are RG connected as

Z, .+ +Y I o Mvv+1) (6.27)

Recently, the duality M{(p, p') < M(p' —p, p’) established in refs. 56 and 36
was given the following RG interpretation in ref. 60 (see also ref. 61):

M(p,p')+ ¢y~ M(p' —p,p') (6.28)

It is thus plausible that one can find an appropriate operator which would
generate a RG flow connecting SM(2, 4v) and M(2v—1, 4v).
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7. ON THE COMBINATORIAL BASES

It is well known that each side of a Rogers—Ramanujan-type identity
can be interpreted as a generating function for a certain set of restricted
partitions.®® In particular, let B, .(N) denote the number of partitions of
N into parts #2(mod4) and #0, +{(2v—1-—25") (mod4v), and let
F, «(N) denote the number of partitions of N of the form

N= i i, (7.1)

i=1

where
fitfisv=5—1, S €1, fritfaivitfauasv—1 (72)

Then FU-%(q*)(B%(¢q%)) is a generating function for F, .(N)(B, N)).
Moreover, according to refs. 40 and 41, Eq. (1.11) implies

Fl'.s‘(N) = Bv..\"(N) (73)

By analogy with the analysis given in ref 62, Melzer'*® proposed a
representation-theoretic interpretation of (7.3) which we rephrase as
follows.

Let [4\%%,,_,> be the highest weight state of conformal dimension
4% .. | in the Verma module of NS sector of SM(2, 4v). Then the set
of states

Whe WERW A% . (7.4)

1,2v—

form a basis for the irreducible highest weight representation. Here

L_,, i=even
W.= v 5
! {G_,'/z, IEOdd (? )

L;, G, are the standard generators of the N =1 super-Virasoro algebra and
Jf; are the same as in (7.2).

Motivated by the partition identities due to Burge (Theorems 1 and 2
in ref. 45), we would like to propose a different basis construction for
SM(2, 4v).

Let us introduce a set of states

GPr oy G2y Gy | A3 > (7.6)

12v—25'— 1+ n
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where n=0 (1) corresponds to the NS (R) sector and f; are defined as
Hi<2tv—5"—n), fo_,=0(mod2), fi+fi 1 <20v-1) (7.7)

with 5" #0 for n=1.

We conjecture that the above set forms an irreducible basis. Note that
our proposal includes both NS and R sectors.

To prove the above conjectures, it is sufficient to show that sets (7.4)
and (7.6) are linearly independent. Thus, one is led to the important open
question of finding an analog of the Kac determinant for the restricted
partitions.

8. CONCLUDING REMARKS

We expect that it would be straightforward to apply the techniques
and methods developed here to study general N=1 SM(p, p’) character
identities. Extension to other SU(2) cosets would call for higher spin
analogs of g-trinomial coefficients whose properties have recently been
studied.'®* % It is important to find partition-theoretic and configuration
sum interpretations of (2.32)—(2.34). We believe that this interpretation
would provide important clues leading to Boltzmann weights for new
integrable models which would have SM(2, 4v) and M(2v— 1, 4v) as dual
regimes. It would also be interesting to find a g-trinomial generalization of
Bailey’s lemma. Further generalizations of the results of this paper can be
found in ref. 67.

APPENDIX. PROOFS OF IDENTITIES FOR g-TRINOMIAL
COEFFICIENTS

In this appendix we prove the identities (4.1), (4.5), (4.9) of
g-trinomial coefficients and the limiting formulas (2.29), (5.35). We follow
the notation of refs. 46-48.

The proof of (4.1) is practically the same as that of (2.3) of ref. 48. We
first use (2.22) to rewrite (4.1) as

<L,A—n; q) i <L—1,A—1—n;q>
4 ), 1 A—1 ,

L+A—n m—l’A——n+1’q>
T4 < A+1 ,

L—1,4-nq
+< 4 >

+qL—l—n(1 _qL—l)<

L—2,A—n;q> (A1)

A
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Then, recalling the definitions (2.21)-(2.23) and (1.2), one can easily derive

L—a—j_ L

q q

qL—Atn(L—I,A—l;j)=-1—‘]—L—t,,(L, A4; ) (A2)
qL_j_qL
gL =1 A+ T = ) =T L 4 ) (A3)
| —gt-%-4
fn(L—l,A;j)=1—q,_—tn(L, 4; j) (A4)
L—2—A

- (=gt (L2, 1) =2 (1=g)(1—qV* ) 1,(L, 4; /)

1—g*
(A.S5)
Then it is clear that
g- M (L= A= j)+g" T (L—1,4+1;j—1)
+tL—1,4; ) +q" " (1 —g- " e, (L=2,4;j—1)

(qL—A—j_qL g~/ —q*

1—q* 1—-g*
1—gt=¥=4 gt =41 —g/)(1—g’*") -
+ l_q[_ + l—qL >f,,(L,A,j)
=t(L, 4; j) (A.6)

from which (A.1) follows by summing over j.

We now prove (4.5). To this end we note that both sides of (4.5)
satisfy the same equation (4.1) with n=1. To conclude the proof one needs
to verify that (4.5) holds true for L =0, 1. This can be easily done by the
direct inspection.

Let us now consider (4.9). This identity can be obtained from the
slightly more general identity

T,

L

l—l(L’ A, ql/Z) - Tn—l(L’ A _2’ qlll)
=q(L+A)/2Tu(L1 A, ‘]l/z) —q'L+2—A)/2Tn(L’ A _2’ ql/'l) (A7)

by setting n =21 and letting 4 — —A. We first use (2.22) to rewrite (A.7) as

<L,A—n;q 4 L,A—’7+1;f]>
a ), 1 4 ,

B L,A—-2—n;q LA—-1—nq
—qltn—A _
A | GRS I G IS



834 Berkovich et al.

Then, noting the identities

¢* 1),

ks 4 ) = gt oL A;j)z(q),(q),“_l (@) r—2-4 (A9)
and
g AL A-2; j+ D) =1, (L, A-2;j+1)]
R i (1) (A.10)
(D (@) e ar (@24
we see that
tAL, Ay ) =gt (L, 45 )
=¢'" " (LA=2; 5+ ) —t,_(L,A=2;j+1)] (A.11)
Since

t (L, A=2,0)—t,_ (L, A—2;0)=0 (A.12)

the desired result (A.8) follows by summing (A.11) over j.
To prove the limiting formula (2.29) we slightly extend the analysis
given in ref 46. Let us use the elementary relation

(q—l)m :( _ 1 )m q[ —mi(m + 1 )]/Z(q)m (A13)

in the definitions (2.21)-(2.22) to write

T, (L, A4;q"?)
qlz-nl(q)L
=)y . L— A4 even
iso @i a—awmp (@irsa—mp(@)y
200402 -myi
=q(l—n)/2 q (q)L 5 L'—‘A Odd
oD a2 (@iLaa—u-1p2 (@
(A.14)
It 1s now trivial to take the limit
qj(j—n)/Z
lim T,(L, 4;¢'*) = for L —Aeven
Lo (q)‘szo.cvcn (q)J
1 q/(j—")/2
= Y for L—Aodd (A.15)

(q). j=0o0dd (9);
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from which, using the identity (2.20) of ref. 63

o tjqj(j— 12 o

Y ————=[1 0+ (A.16)

j=o (9); i=0

with 1= 4¢'' =2 we obtain the desired result (2.29).
Finally, let us prove (5.35). Recalling (5.33), we can express the lhs of
identity (5.35) as

g(j,f1)+g(j+1,(1)=L1inj G(L.j.q, jeZ, j=0 (AlT)

where

L

G(L.j, @)=Y (=D'x{[T_(L j+2)+T_{(, h+2T (L, j+1)]

1=0

—[T_((Lj+ D)+ T_(,j—1)y+2T_(l, H1} (A.18)
Taking (4.5) into account, we find
G(L,j,q)=(—1)"*"'"[TUL+ 1, ))—=T(L+1,j+1)]—6,, (A19)
Combining (A.17), (A.19), and (2.30), we obtain the equation

g(j,q)+g(j+1,q)=Llim G(L,j, )= —9;, (A.20)
which proves (5.35).
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