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Polynomial Identities, Indices, and Duality for the 
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We prove polynomial identities for the N =  1 superconformal model SM(2, 4v) 
which generalize and extend the known Fermi/Bose character identities. Our 
proof uses the q-trinomial coefficients of Andrews and Baxter on the bosonic 
side and a recently introduced very general method of producing recursion 
relations for q-series on the fermionic side. We use these polynomials 
to demonstrate a dual relation under q___,q-t between SM(2,4v) and 
M ( 2 v -  1, 4v). We also introduce a generalization of the Witten index which is 
expressible in terms of the Rogers false theta functions. 

KEY WORDS:  

1. I N T R O D U C T I O N  

All chiral partition functions of conformal field theory have two distinct 
representations: (1) a bosonic form which may be expressed in terms of 
theta functions from which modular transformation properties are readily 
apparent, tll and (2) a fermionic form in terms of q-series in which the 
quasiparticle spectrum of the theory is clearly seen. The bosonic form is 
most useful in computing the conformal dimensions. The fermionic form is 
best adapted to study massive perturbations. The equality of the two forms 
can be thought of as generalized Rogers-Ramanujan identities. 

The study of the bosonic representations has been well developed for 
over a decadE. However, with the exceptions of the pioneering work on 
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characters of A~21 (refs. 2 and 3) and the Z N parafermionic theories] 4'5~ the 
study of the fermionic representations started only several years ago and in 
the last few years there have been many conjectures and proofs of ferionic 
representations of the various characters/6-38~ 

In this paper we consider the N =  1 superconformal model SM(2 ,  4v). 
The bosonic form of this model's characters is a special case of the general 
formula ~39~ 

Xr..,.P'l(q) ,.,p_,.,p . . . . . . .  

( _ q  ....  )~. 

(q) ~_ j ..../--" 
(qj(jpp'+rp'-sp)/2 q~jp+,')ljp'+s)/2) (1.1) 

where 

k - - I  ~'l-[j= 0 (1 --AqJ) ,  
(A)k= [1 ' 

k = l , 2  .... 
(1.2) 

k = O  

and 

if a is even [ Neveu-Schwarz (NS) sector ] 

ifa is odd [ Ramond (R) sector] 
(1.3) 

Here r = l , 2  ..... p - 1  and s = l , 2  ..... p ' - l ,  and p and 
coprime. 

Setting p = 2, p' = 4v in ( 1.1 ), we have for n = 0, -t- 1 

( p ' - - p ) / 2  are 

( _qC~ + Inl)/2~ ~,  . ,  

2,_,.4~, 1.2• ._2. , . ,+ l , , l_ l (q )=B. , .  , -  . ' . , , ~ ( q ) =  '~-- / .  ( _ l ) J q , ' j ' + j ( . , " + { I - I , , I ) / 2 }  
(q)~ .; . . . . .  

(1.4) 

where here and throughout the rest of the paper 

s ' = 0 ,  1,2 ..... v - I  (1.5) 

and n = 0 (_+ 1) corresponds to the NS (R) sector. 
The ferionic representations of SM(2 ,  4v) characters are given in terms 

of the function ~'"" F.~, (q) defined for n = 0, _+ 1 as follows: 

.,-' ( 7 )=  2 (q) , ,~(~l) , ,~.(q)  .... m 
l ; !  I , n 2 , . . . ,  11v ~ 0 q 

(1.6) 
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where the q-binomial coefficient is defined in a slightly unconventional way 
a s  

m q otherwise 

The quadratic form Qf  and linear form Lf,..,., are 

:<: 
j=2 

1771 ~ N/ (1�9 L f " ' " = n ~ + l  ...... '+ l  

t, 

N k =  ~ n/ (I.10) 
j = k  

Once again 17=0 corresponds to the NS sector and n =  +1 ( - 1 )  
corresponds to the first (second) representation for the Ramond sector, 
which we will call R + ( R - ) .  We note in passing that the reason for the 
existence of these two representations can be traced back to the fact that 
zero modes of fermionic fields act nontrivially on the highest weight vectors�9 

The relation between the bosonic and fermionic forms depends on the 
characters studied�9 We consider three separate cases: 

1. For the Neveu-Schwarz sector we have 

B~y,O)(q) (,,,o) �9 =F. , . ,  ( q )  (1.11) 

2. For  R + 

1 { v i i  B(,y.~,(q)=~_(F.,.," (q)+Fl~Y~)~(q)) for s ' ~ O  
�9 (F~o"'l~(q) for s ' = 0  (1.12) 

3. For R -  

(R(v,-I  2~v_ 1 )(q) for s ' = v - - 1  
FI, y" ')(q) = IBl,, .-I I,,.- (1.13) 

�9 . .,.' )(q)+B,.,+ll~(q) for s'C=v--1 

or, equivalently, 
v - -  | 

B!,Y'-|'(q)= ~, ( -1 ) t+" 'F~" - | ' ( q )  (1.14) 
I = s '  

In the Neveu-Schwarz sector the identities (1.11) are the generaliza- 
tions to arbitrary v by Andrews ~4~ (for s ' =  0) and Bressoud ~4~ of the v = 2 

with 
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results due to Slater [Eqs. (34), (36) of ref. 42] also known as the 
G611nitz-Gordon identities. ~43"44~ This relation between the G611nitz- 
Gordon identities and the Neveu-Schwarz sector of the SM(2, 4v) model is 
well known. ~37"38) For  the Ramond case R -  with s ' =  v - 1  the identity 
(1.13) is obtained from corollary 4.1 of ref. 40 with c--* 02, b = - q  and 
a=q and for the case R + with s ' = 0  the identity (1.12) is similarly 
obtained from ref. 40 with the specialization c---, 02, b = - 1  and a = 1. 
These two special cases of the results of ref. 40 were also conjectured in ref. 
38. For  all other values of s' the results of (1.12) and (1.13) are new. In 
general, the Ramond-sector Fermi forms should also be compared with the 
result of Burge 144) [stated at the bottom of p. 204 with the misprint 
(q-', q2),,k_~ corrected to (q2, qZ)nk_2] ' where a free Fermi term is factored 
out and the number of variables in the sum is reduced to v - 1 .  
A direct proof of the equivalence of (1.12) with the result of ref. 44 does not 
seem to be known. 

The first purpose of this paper is to generalize both the bosonic and 
the fermionic expressions from infinite series to polynomials. Indeed, we 
will see that there are not one, but many distinct polynomials which 
generalize (1.1) and (1.6). We will then prove Fermi/Bose identities for 
these polynomials by obtaining recursion relations between several different 
polynomials which are related to a given character. These polynomial iden- 
tities will reduce to (1.11)-(1.13) when the degree of polynomials goes to 
infinity. Our tools in this proof will be the use of the q-trinomial coefficients 
of Andrews and Baxter ~46-4sl on the bosonic side and the methods of ref. 22 
on the fermionic side. 

By the very name the N =  1 superconformal models have an inter- 
pretation in terms of a fermion and a boson, and one aspect of this inter- 
pretation is seen in the factorization of the bosonic form (1.1) into a free 
fermionic factor ( - q  .... )~ and another factor which looks as if it is 
obtained from a free boson by projecting out null states. Correspondingly, 
there should be an interpretation of the Fermi form (1.6) which separates 
the quasiparticles into one which represents the fermion and the rest which 
represent what in the bosonic form was called the projected boson. One 
such interpretation is instantly suggested by the form (1.6) itself, where ml 
and 17; appear in quite different ways. We will thus adopt the tentative 
interpretation that m~ is related to the fermion number operator F or 
perhaps more accurately that ( - 1 ) " "  is related to the chirality operator 
( - 1  )r. With this identification we can consider the object 

- , ,  [N:I ,115) F.,.," ( q ) =  2 (~,,,---~)2:::(--~,,,. m q 
m l  ,tt2,...,tt*. >10 
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and ask what relation it has with 

Tr( - 1 )F exp( - H) (1.16) 

In the NS sector this relation is straightforward. Replacing x/~ by 
- v/q in ( 1.11 ), we immediately note 

Pls,~'~ = F,.,Iv'~ (e _,~i q) = Bs ' .l~ ol (e-'~iq) ( 1.17) 

Clearly, pl],.O~(q) is the T-modular transform of F!,y.m(q) and therefore must 
be equal to (1.16) according to ref. 49. In the Ramond sector we again find 
that there are two distinct cases. For R § we define in analogy with 1.12) 

1 - - { v  I )  
~q,.t)(q)=f~(r~,'s. (q)-P[Y'~-~(q)) for s ' r  

1.18) 
[P~oV'l)(q) for s ' = 0  

Then since we prove in Section 5 that 

P~]"')(q) = 1 1.19) 

we see that 

01 for s' ~ 0 
BIs~"l~(q) = for s' = 0 (1.20) 

which is equal to the Witten indices 15~ as studied in ref. 49. We want to 
emphasize that formulas (1.18) are not identities, but definitions. However, 
in Section 5 we will find polynomial identities for s ' r  0, which provide 
extra motivation for the definitions above. For the case s ' = 0  an 
appropriate polynomial identity is lacking. Our motivation in this case is 
the analogy with (1.12) and the fact that we have an agreement with the 
Witten index calculations of ref. 49. 

For the Ramond case of R -  we define in analogy with (1.14) 

v - -  1 

B~r,-,)(q)= ~ p~v.-,)(q) (1.21) 
/ = s '  

In Section 5 we find the bosonic companion of pl.~.-~)(q). Remarkably, it 
is not a constant, but rather is 

fI~v~ i(q) for s' = v-- 1 
~c]"-ll(q)=),Is , "  ,V)(q)_is,+j(q)lV) for s' : / : v -  1 (1.22) 

where 

I~]')(q) = 1 + ~ q,,/-(qSV_q-~.v) (1.23) 
j = l  
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is the false theta function introduced by Rogers c5~ and extensively studied 
by Andrews. t521 Thus 

,B's,V' - l ) ( q )  = I~.:"(q) (1.24) 

We show in Section 5 that 

S t 

lim l~sP(q)= I - -  (1.25) 
q ~  1 1" 

which suggests that it is possible to define for R -  a fractional analog of the 
Witten index. 

In Section 2 we state in detail the polynomial analogs of ideiatities 
(1.11)-(1.13) and the sets of recursion relations we will use to prove them. 
In Section 3 we show that the fermionic polynomials satisfy these recursion 
relations and in Section 4 we show this for the bosonic polynomials. In Sec- 
tion 5 we discuss the Fermi forms ~,!~,,+l~(q) and the indices BIs~"+-l~(q). In 
Section 6 we use the polynomial identities to study the dual relation which 
exists between SM(2, 4v) and M(2v-  1, 4v) under the replacement q ~ q - i .  
Finally in Section 7 we discuss representation-theoretic consequences of 
two partition identities due to Burge. We conclude with some remarks 
about possible generalizations and open questions. Technical details con- 
cerning q-trinomial coefficients are treated in the appendix. 

2. POLYNOMIALS AND RECURSION RELATIONS 

The starting point for proving Rogers-Ramanujan-type identities by 
the method of ref. 22 is identifying an (n, m)-system and an associated 
counting problem. For  the present case the appropriate (n, m)-system is as 
follows: 

n,+m~=�89 
n~+m~ =~(L+1711 + m 3 ) - a ~  

. . . .  (2.1) 
n ;+  mi=  l (mi_ 1 + mi+ 1 ) -  ai for 3<~i<~v-1 

n,, + mv = �89 +m,,) -a~ 

where ni and m~ are integers and the components a; of the vector a are 
either integers or half-integers. This system is closely related to the TBA 
equations for the XXZ model [(3.9) of ref. 53] with anisotropy 

(2v -- 1 ) (2.2) 
Y = ~ 4v 
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In the language of our previous treatment ~36~ of the M(p,p') minimal 
models, system (2.1) consists of two Takahashi zones with tadpoles at the 
end of each zone. The principal difference between the present case and the 
one considered in ref. 36 is the appearance of two inhomogeneous terms 
L/2 in the first and second equations. The second inhomogeneous term 
arises because N =  I superconformal models are derived from the spin-1 
XXZ chain, ~541 while N =  0 models, investigated in ref. 36, are derived from 
the spin-l/2 chain. The presence of the first term in (2.1) indicates that the 
spin-1 XXZ model with y given by (2.2) is in the regime of strong 
anisotropy. This inhomogeneous term is not expected to be present for any 
other N =  1 SM(p,p') model with 2p'/(p' - p )  >~ 3. 

The (n, m)-system (2.1) describes v Fermi bands. Each band consists 
of ni + ml consecutive integers with only 17; distinct integers being occupied 
by the 17; quasiparticles. The remaining m; integers can be thought of as 
holes. If one allows particles to move freely in each band (subject only to 
fermionic exclusion rules), then one is naturally led to the following count- 
ing problem: 

F ( L ) =  ~ " F q l _ i l n ; + m ; [  (2.3)  
lli.IHi~O ; ~  | L . J / ~ i  

where the summation variables hi, m; are related by (2.1) with a fixed to be 
zero for the time being. To calculate F(L), we use three simple conse- 
quences of (2.1), 

L = n l + m , , +  ~ (2i - -3)n/  
i = 2  

m i = m , , + 2  ~" Nj, i>~2 
j = i + l  

/z ! + m 2 ---- N 2 

(2.4) 

(2.5) 

(2.6) 

along with the generating function technique (Section 2 of ref. 22) to obtain 

F(L) =B(L)  (2.7) 

where 

j . . . .  2~j _,+ 2 v j + l  

and Nj was defined in (1.10). 
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The trinomial coefficients (,L.) 2 which appear in the above equation are 
given by 

z + l +  = ~ i " 
i = --L 2 

In what follows we will consider three different q-analogs of (2.7) asso- 
ciated with the NS and R -+ sectors. We remark that these q-deformations 
amount to prescribing the linear dispersion law for the quasiparticles 
described above. We also point out that one can use (2.1) and (2.4) to find 
a pictorial representation for quasiparticles in the spirit of ref. 26. This 
representation will be given elsewhere. 

Motivated by (2.3), we now introduce the polynomial generalization 
of the fermionic form F~Y'"I(q) of (1.6)-(1.9): 

' '" '  f i  [ ni + mi] (2.10) F,.,.,., (L, q) = ~ qOf+Lf,,.,. L ni J 
cdr'.s, i= 1 q 

where the "finitization" parameter r' is 

r '=O,  1,2 ..... v - 2  (2.11) 

and the variables 17,., m i are related by (2.1) with the vector a defined by 

a = a (' ')  + a 1"r 

1 (2.12) 
. . (k)  f~ - ( l~ i , v - - (~ i . v - -k )  f o r  O < ~ k < ~ v - 2  

1 eli = ~ 5 ( 6 i . v  --t- 1~i. 1 ) f o r  k = v - 1  

The domain of summation N,.,..~., is best described in terms of n and m~ 
which are subject to the constraint 

L = ( n l  + a l ) + m v +  i (2 i - -3) (n i+ai)  (2.13) 
i=2 

All other variables are given by 

m I = N 2 -- ii I (2.14) 
i, 

m i = m , , + 2  ~, ( j - i ) ( n j + a j ) ,  i = 2 , 3  ..... v--1 (2.15) 
j = i +  1 

Keeping in mind that 

neg. int.] 
0 j q = l  (2.16) 
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we define Nr'..r for s' >~r' as the union of the sets of solutions to (2.13) 
satisfying 

O: n i, m,,>tO 

1: 1l , ,=0,  m , , =  - 2 ,  n~ ..... n~_~1>0 

2: n , ,=n , ,_ l=O,  m , , = - 4 ,  n I ..... 1L,_2>~0 

Ft: l l v ~ l ' l v _  l ~ "'" ~ H v _ r , + l  ~ 0 ,  /"g/v ~ --2r', 

(2.17) 

h i , . . . ,  r l v_r ,  >~ O 

and for s' < r' the definition is the same as above with r' ~ s'. 
Using the asymptotic formula 

lim[A] = 1 
A . . . .  B ( q ) s  

(2.18) 

and the simple consequence of (2.1) 

i 

n i + m i = L + m  1 + n i - 2  y" ( j -  1 ) (n j+aj )  
j = 2  

--2 i ( i - -1 ) (n j+a j ) ,  i>~2 (2.19) 
j ~ i + l  

along with (2.14), we establish relations between " "  F,.,.s, (L, q) and the 
fermionic forms ( 1.6 ) 

lim Iv.,,~ F ,., .,, (L, q)=F(s~,,"(q) (2.20) 
L ~  

which hold for all r'. 
To write the bosonic polynomials one needs the q-analogs of the 

trinomial coefficients (L ,~)_, introduced in (2.9). Following Andrews and 
Baxter, 146~ we define 

L , A - n ; q )  = ~ t , , (L ,A; j ) ,  (2.21) n ~ Z  
A 2 j>~o 

and 

( ql) 
T,,(L, A; ql /2)= q[LIL--,,)--A(,4--n)]/2 L, A--11; - 

A 2 
(2.22) 
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where 
qjlj+ ~ -"~(q)L 

t,,(L, A; j) = 
(q)j (q)j+ A (q)L--2j-- A 

(2.23) 

We note  the e lementary  p r o p e r t y  

T,,(L, A; ql/2) = T,(L, - A ;  ql/Z) (2.24) 

and r e m a r k  that  

e l / , ,  I ( - 1 )  c+'~ T, (L ,A;q  I/z) for n e v e n  
T,,(L, A; - ~ -) =)T,,(L, A; ql/2) for n odd  

(2.25) 

Consequent ly ,  T,,(L, A; qJ/2) is ac tual ly  a po lynomia l  in q for n odd  or  for 
n even and L + A  even, while for n even and L + A  odd,  T,,(L,A,q ~/2) 
conta ins  only odd  powers  of  q~P-. 

We then have the fol lowing defini t ion of  bosonic  po lynomia l s :  

1. F o r  the N e v e u - S c h w a r z  sector  

B(,,.o~t r. 
, . 2  . -~ �9 

,.,... . . . .  q ) =  ~ (--1)Jq'J('~+l/-)J(To(L, 2 ~ j + s - - l , q l / 2 )  

. t .  + To(L, 2 v j + s '  + 1 + l  , ql/2)) (2.26) 

2. F o r  the R a m o n d  sector  R + 

B(rY.'.~!,'(L, q) 
,=c 

I s ~ (-1)Jq'J-+"9(T_l(L, 21j+s . . . .  ql/,_) 

. t .  + T_I(L, 2 1 j + s '  + 1 + l  , q(/2) 

- -  . t .  +T_l (L ,  2~j+s'--r '  1;ql/2)+T_~(L, 2~j+s'+l,q]/ ' -))  (2.27) 

3. F o r  the R a m o n d  sector  R -  

L r'  

-'+.,7 TI(L, 2~j + s' Bc'"-])(L,q),.,..,., = ( - 1)JqV ~ ( - -  1 )," + i +i;ql/z) 
j = --=r. i = --r '  

(2.28) 

w h e r e  s '  = 0,  1, 2 ..... v - 1 a n d  r' = 0,  1, 2 ..... v - 2 .  
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Using the limiting formula of  the appendix 

!( _q , , - , , , / z )~  + (q,l-,,1/2~ 

lim T , ( L , A ; q ' / ' - ) =  - - - - - - - - - 2 ~ . . f - - -  "'~ if L - - A i s e v e n  
L - -  ~. _ _ q ( l - , , I / 2 )  ~ _  (q ( l  - , , I /2 I 

' ~  if L - A i s o d d  

(2.29) 

and noting the special case 

lira T,(L,  A; q:- )  = ( - q ) ~  (2.30) 
L --.~ (q) 

we find the relation between the polynomials  B~i~')(L, q) and the characters 
(1.4) 

lim BI'"m(L,.,.,., , q) = B!,,Y'~ 
L~,._ (2.31) 
lim ~  I,,.-t ~,,.+l~(q) �9 . , , . , e , ~ , q ) =  lim B:..,., ~ ( L , q ) = B , . , -  

L - -  . z  L ~ 

which holds for all r'. 
We will prove the following polynomial  identities which generalize the 

character  identities ( 1.11 )-( 1.13 ): 

1. For  NS 
Iv, O) (v.O) F,.,,.,., (L, q ) =  (2.32) B,.,,.,.,(L,q) 

2. For  R + 

l i,,.l~ q; trr , . . . , . ,_ j (L ,q))  for s 'vS0 BtV, llll." ~5(F(,.,..,., (L, , -  ~:.,(v 11 
," ," ' - '  q ) =  I,,.I j (2.33) 

"" [F,.,.o (L, q) for s' = 0  

3. For  R -  

, , ,_,  , (B~,Y',y_'~(L, q) for 
Fr'..,., ~(L ,q ;=~Bi , ; , _ lqL  a ~ .  Bl , , . - i i~L , ,.,..r , , .lj-r ,-'.s'+lt , q )  for 

s ' = v - -  1 
(2.34) 

s ' q : v - I  

We will prove these by showing that  both  ~""~ ~""~ F,.,.,., (L, q) and B,., ,., (L, q) 
satisfy the following set of  recursion relations for v/> 3 in the variables L 
and r': 

ho(L) = h d L  - 1 ) + (qt  -cl -,./2 + 1 ) ho(L - 1 ) + (qL-- ! _ _  1 ) ho(L - 2) 

h,.(L) = h r _ ~ ( L -  1) + h r +  I (L- -  1) 

+ q L - ~ I - " V 2 h r ( L - l ) + ( q L - l - 1 ) h , . ( L - 2 )  for l<<,r<~v-3 

h , , _ , _ ( L ) = h v _ 3 ( L - 1 ) + q L - I I - " V 2 h , , _ 2 ( L - - 1 ) + q L - I h , , _ 2 ( L - - 2 )  (2.35) 
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where 

0 for NS 

11 = 1 for R + 

- 1  for R -  

(2.36) 

Note  that  the first and the last equat ions  follow f rom the middle equat ion  
if one introduces h_,(L) and h,,_l(L) satisfying 

and h _ ~(L) = ho(L) (2.37) 

h~_,(L)=h,_2(L- 1) (2.38) 

For  v = 2 there is only the single equat ion  

ho(L)=(l+qL-Cl-")/2)ho(L--1)+qL-lho(L-2) (2.39" 

Observe  that  the recursion relations in the sectors NS and R e ar t  
independent  of  s'. The  p roof  of  the po lynomia l  identities will be comple ted  
by showing that  (2.32)-(2.34) hold for L = 0, 1. We record here the values 
of  the fermionic and bosonic  forms at L = 0 ,  1, compu ted  directly f rom 
(2.10) and (2.26)-(2.28). Not ice  that  there is no dependence on v. The  
fermionic forms are 

( ~,,, i! ) , .  F,.. ,., (0, q) = 6r' ," 

1 / 2  

Fl~,~ q)= 
r ' .  s '  ~ ~ 

F,.,,r q)= 

F',)",r"(1, q ) = { i  

if r '  = s '  = 0 

if r '  = s '  ~> 1 

if t " = s ' + l o r s ' = r ' + l  

otherwise 

if r '  = s' = 0 

if r ' = s ' ~ >  1 

if I " = s ' + l o r s ' = l " + l  

otherwise 

if r '  = s ' = 0  

if r ' = s ' / > l o r r ' = s ' + l o r s ' = r ' + l  

otherwise 

(2.40) 
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The bosonic forms are 

B t V  o)t 0 r','s' ~ , q) = 6,.,.,., 

(l+q~/'- if r ' = s ' = 0  

t,, o~ ~ql/2 if r' = s' >/1 
Br,'.,., (1, q) --- if r' = s ' +  1 o r s ' = r ' +  1 

(0 otherwise 

Iv.iI Ilk if r ' = s ' = 0  
Br, ,., (0, q) = if r ' = s ' > ~ l o r s ' = r ' + l  

otherwise 

l + q  

l+kq 
1 1 ~_+sq BIV, l~tl q ) =  

r,,s,, , 1 
1 

0 

~ v . -  I f 0 Br,,.,., ~(0, q )= , (_ l ) r ,+ . , . ,  

t,,.- ~ - 1 )r' + s '+  | B,.,,., )(1, q ) =  

if r ' = s '  = 0  

if s ' =  1, r ' = 0  

if r ' = s ' > t l o r s ' = r ' + 1 > / 2  

if s ' = 0 ,  r ' =  1 

if r ' = s ' +  1 > ~ 2 o r s ' = r ' + 2  

otherwise 

if r' < s '  

if r '>ts '  

if r' = s ' = 0  o r s ' = r ' +  1 

if r ' > s '  

otherwise 

(2.41) 

Equations (2.32)-(2.34) may be readily verified using these expressions. 
The character identities (1.11)-(1.13) will follow from the L-~ ov limit of 
the polynomial identities (2.32)-(2.34) thanks to (2.20) and (2.31). 

We close this presentation of results and methods with several 
remarks. First, attention should be drawn to the presence in the fermionic 
forms of solutions (2.17) to the system (2.1) with negative values for my. 
This is the first time such solutions have been explicitly encountered, but 
it is expected that they will also be found in other nonunitary models such 
as M(p, p') for p + 1 4:p'. Second, we direct attention to the occurrence of 
linear combinations in the R + sectors (2.33)-(2.34). Such linear combina- 
tions have been seen in several other situations and are presumably a 
generic feature of Fermi/Bose correspondences, although for the unitary 
model M(p, p + 1) the Bose and Fermi polynomials appear only singly. We 
also remark on the crucial role played by the fact that there are many dif- 
ferent polynomials which "finitize" the same fermionic character. This is a 
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general feature which, for example, occurs in the proof of the identities of 
the nonunitary M(p,p') minimal model, c36) 

Finally, we comment that the Fermi and Bose polynomials and the 
corresponding recursion relations given here are not particularly unique. 
As an example, for R + with s ' - -0  we have two alternative representations 

B.'.~,ir q) = BI(/')(L, q) = B2(rP(L. q) (2.42) r'.O ~ ' ~  

where 

BI ' ) tL  = ~ -- ,., , - , q )  ( l)J(q"J-Tt(L, 2~ j+r '+ l ;q  

+ q,,j(j-l)+(L-~'VZTo(L ' 2vj + r'; qV2)) (2.43) 

and 

B2~Y)(L,q)= ( -  1)Jq'~'- '  ( _ l ) i+ l+~ '  Tl(L+l,2vj+i;ql/"-) 
j = - -  ~ i = 1 

I ' -  2 "] 

+ ~. (-1y+J+r'T~(L, 2vj+i;q ~/2)] (2.44) 
i = r '  + l 

More generally, there are systems of polynomials which reduce to the 
characters in the L ~ oo limit and satisfy slightly different systems of equa- 
tions from the one given here. However, in all these cases the new polyno- 
mials may be expressed as linear combinations of the polynomials given 
above. 

3. PROOF OF FERMIONIC RECURSION RELATIONS 

We now turn to the proof that the fermionic sums of Section 2 defined 
by (2.10) satisfy the recursion relations (2.35). The proof is based upon the 
use of telescopic expansions of products of q-binomial coefficients 
developed in ref. 22. In contrast to the many identities on q-trinomial coef- 
ficients that we shall use in the proof of the bosonic identities, the only 
identities we require for the proof of the fermionic recursion relations are 
the elementary recursion relations for q-binomial coefficients 

and 

["+"'1 1] +q [,,+m ,] ,31, 
11 J q L 17 q 17 - -  1 q 

[,,+m]n ,,=["+m 1 ,, ,, ,32, 
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We note that in order for these two identities to be used in our proofs 
without exception we need to use the definition (1.7). 

In order to give a compact proof we introduce the following symbolic 
notation for fermionic sums: 

where 
{t [ qr P qr U nj+mj+Pj] 

Q ~ = ~  j=, n j+Qj  J 
(3.3) 

q 

v 

~ b ( n , A ) = l ( n ~ + N ~ ) +  ~ N ~ + A ' n  (3.4) 
i = 3  

and ~ specifies the domain of summation variables mr and n~, which are 
related by (2.1). In what follows we will use three domains ~,., ,.,, ~,.,.~.,, 
~ t  ~,.,..,.,, where: 

1. ~r,.s, was defined in Section 2 by (2.17). 

2. -@~,,,e is defined by (2.13)-(2.15) and 

m , , = - 2 r ' ,  1l . . . .  ,=nv- , . ,+l  . . . . .  n, ,=0,  n l ,n2 ..... n . . . .  ,_1~>0 (3.5) 

~,..,., is defined in the same way as ~,,s, except that n . . . .  ,_ ~ > / - 1  
(whereas n .... . ,  l~> 0 for ~,.,.s,). 

In terms of this notation we write the fermionic polynomials for 
arbitrary A 

F,~.,,~.,(L,A,q)=q~('A){ O} (3.6) 
C-~r'.s' 

To avoid bulky formulas we find it convenient to use the shorthand 
notations 

F,.,(L) = F~I,j(L, A, q) (3.7) 

~b(n) = ~b(n, A) (3.8) 

throughout the rest of this section. 
All the equations of (2.35) are special cases of the following set of 

recursion relations for v/> 3: 

Fo(L) = F1(,L - 1 ) + (qI.-~l/2~+~, + 1 ) Fo(L - 1) + ( q t -  l +p _ 1 ) Fo(L -- 2) 

(3.9) 

(3.10) 

F r , ( L ) = F r , _ , ( L -  1) + F,.,+ ~ ( L -  1) 

+qL-(I/2~+~'F,.,(L- 1) +(qZ- l+ /J_  1) F , . , (L-  2) 

for 1 ~<r'~<v--3 

822/83/5-6-2 
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and 

F~_2(L) = Fv_3(L-- 1 ) + qt-11/2)+~Fv - i( L _ 1) + qL- 1 +PF~_ l(L--  2) 

(3.11) 

where 

~ = A _ , - a ~  "r 

f l=Al  +o~ 

~,s',_ ~ ajS',=~s. .... ,~,., +~O(v--s' <i)  
i - -  

j = i  

and O(a < b) = 1 if a < b and 0 otherwise. 
When v = 2, Eq. (2.39) follows from the single equation 

(3.12) 

F0(L) = (I +qZ--~v2~+~)Fo(L- 1)+qL-I+PFo(L-2) (3.13) 

We will find that in order for (3.9)-(3.11) to hold, A, ~ls'~ should satisfy 

A i + l - A i =  ~'~s'Jz.i+l for 2<~i<~v-1 (3.14) 

As a consequence of (3.14) only A~ and A 2 may be specified independent 
of the inhomogeneous vector al"'( 

Making use of (1.8), (1.9), (3.12), and 

m, = N2 - h i  (3 .15)  

one verifies that for A defined by (3.14) with 

17 17 
- - - -  = A l =  2' A2 ] + ~ s '  .... 1, 17=0, +1 (3.16) 

o~---, n/2, f l ~  O, ~b(n)--* Q f +  L f,,.,., and therefore the fermionic forms (3.6) 
and recursion relations (3.9)-(3.11) reduce to (2.10) and (2.35). 

Let us denote the set of solutions of (2.1) with the inhomogeneous 
vector (2.12) as {n, m}L.r,.,.,. "['hen, if we define vectors e / and  E/,k by 

k 

(el)i=c~/.i, Et, k=  -- ~ ei (3.17) 
i = l  
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we may use (2.1) to verify the following relations: 

{n, m} L-Lr'- , .s  ' =  {n, m} L.r'.s' + {0, E2 . . . .  .,} 

{ n , m } L _ l , r , , s , =  

{n, m} L--2.r'.s ' =  

{n ,  m }  L_2,r,  s , = 

n, m} L - -  l , r ' +  l ,s'  

{n, m} L.,.,.s, + { --%, --e,} 

{ n, m} L,,.,.,, + {--e,--%,0} 

{., m} 

+ {%_:_l-e,_,,, 2E2 ..... .'-l} 

{.,m},,,,, 

+{e .... ,_i-e .... .,,E2 ..... '-l} 

for 

for 

811 

(3.18) 

v - r '~>3  

v-r'  >t3 

q~(n) ~ ~b(n + e .... ,-i - %-,') 

Then from (3.18) and (3.20) we obtain the following expressions: 

Fr,(L)=q~'"'{ O} (3.21) 
�9 0 C(dr.s, 

..... t (3.22) 

qL-, t/2)+~F,.,(L - 1)= qr +' '  +-,2 ~E,,2 ) (3.23) 
(. --e2.) ~e.e 

with 

Furthermore, if we recall 

L=n, +al + ~ (2i-3)(n~+a3+m~ 

L = n l  + N 2 + m 2 + a  1 (3.19) 
i i  

m ; = 2  ~ (Nl+gtl)+m~, i>~2 
I = i +  I 

and use (3.14), we may verify the following identities for ~(n, A): 

~b(n) + n~ +m2 = ~ b ( n - e 2 ) + L -  �89 

~(n)  + m2 = ~ ( n - - e  I - - e2)  + L - -  1 +fl  
(3.20) 

[ ~ + m / ] ( n - - e / - i  + e / + e  ... .  ' - l - - % - r ' )  

=~(n) +m/_1 -- 1 for 3~<l~<v--r' 
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qL + P F ~ , ( L - 2 ) = q  ~"~+"''- ~EL2~e..~ (3.24) 

F e ( L _ 2 ) = q ~ , ,  , {2E2 . . . .  .,_. + e ~ _ , . , _ , - e  .... ' t  (3.25) 
e , , _  ,., _ 1 - -  e , , _  ,., ) ~;,.,, 

- t E 2  . . . .  . ' - l  + e v - r ' - l  - e  .... "t  F , . , + I ( L -  1 ) = q  *~n~ ~ e . . . .  ' --1--e .... ., ~ ; . . . + ~  (3.26) 

where 

~ = q + ~ m O ( s ' > r ' ) {  E2 ..... "'-J} (3.27) 
0 ~&...~. 

and O(s'> r ' ) =  1 if s ' >  r' and 0 otherwise. We note that the term ~ arises 
because in general ~/,~,., ~ 9,.,+_ i..,,. 

The method we use to prove (3.9)-(3.11) is the telescopic expansion 
technique of ref. 22, which is based on the following two identities, which 
follow from (3.1): 

1. Telescopic expansion from right to left, 

{Q} = f P + E t k ] ~  Q " ~ 2 . , 'q ' " '+r i -Q'~P+Eci~ (3.28, 

2. Telescopic expansion from left to right, 

= P i,~- + y ,  q,,,,+r~-o, ~'P+Ei,  k (3.29) 
i=/ [ Q - e i  ) 

The proof of (3.9) will follow from (3.10) with the definition F_ ] (L)= 
Fo(L). To prove (3.10), we begin by applying the right-to-left telescopic 
expansion (3.28) to F,.(L) to obtain 

F,.,(L) q~'"' f E2 ..... "t  . . . .  ' I E-"';  = + Y'. q~l"~+"" (3.30) 
0 j~ . , .  t='- L--et)~r...,. 

and then further expand the term in the sum with l =  2 using (3.2) to get 

F,.,( L ) = q'~"~ ~ 0 j ~ ,. . 

+ q,~l.l+,,l + .... IEI,2 ; q*{.l+ . . . .  (El.2 t 
- + - + Z  ( 3 . 3 1 )  
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where 

Z =  ~ q~("~+"" + ~  (3.32) 
/ = 3  - -e lJ~/ . s ,  

Then making use of (3.22)-(3.24), we find 

F,.,(L)-F,.,_I(L- 1)-qL-( ' /2)+: 'F , . , (L-  l)-qZ'-I+lJF,.,(L-2)=Z (3.33) 

We then change the summation variables in the lth term in the expansion 
of Z as 

n--, n - e l _ l  + e / + e  .... . ,_ l - -e  .... ., for 3~<l~<v--r' (3.34) 

where we note that this change depends on 1 and sends the domain ~,.,..,., 
to ~',.,..,.,. Thus, making use of (3.20), we obtain 

Z =  .... -'-I [ J" SE2 . , _ l + E t  . , _ l + e  . , _ l _ e  .,-~ ..... ..... .... .... q~(. )  +ml- -  1 .q_ j~  

/=2 - e / + e  .... - ' - i - e  .... ., ~'r...,, (3.35) 

To complete the proof we expand F , . , + ~ ( L - 1 ) - ~  given by (3.26) 
using the left-to-right telescopic expansion (3.29) as 

F,.,+ ] ( L -  1) 

=(I,~,.I~'E2:| .... . , _ l + e  .... . , _ l - e  .... .,~( + ~  
t e v - - r ' - -  1 - -  e v - - r '  Jc.f/'r..s. 

= qg(m t2E2 . . . . .  , _ lWe .... .,_l --e .... ' t  
k ev_r,_ I -- e,,_,., )~,, ,  

.... -'-i { --e .... "'t 
+ ~ q~l.l+,,,i-, E2 ..... - ' - l + E /  ..... - , - l+e , - , - , - ]  + .~  

1=2 - - e l + e , , _ , . ,  1 - - e , ,  ,., d~,,.,. 

(3.36) 

Thus, comparing the right-hand side of (3.36) with (3.25) and (3.35), 
we obtain 

F,.,+,(L-1)-F,. ,(L-2)=Z (3.37) 

and hence the desired result (3.10) follows from comparing (3.33) and 
(3.37). 
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It remains to prove (3.11). To do this we expand Fv_2(L ) as 

F,_,_(L)=q,O,) tE".'- t +q,O,~+,,,+,,2~E~,2 l 
0 J~,.-2.,' [--e23~,. _,,, 

+q~,,,,+,,,-tE'.2t 
t.tl,2J~,,_z~ 

(3.38) 

from which (3.11) follows upon using (3.22)-(3.24). 
The proof of Eq. (3.13) for v =  2 is completely analogous to the proof 

of (3.11 ) and will be omitted. 
We close this section with a few remarks. The major new feature of 

this derivation which did not occur in ref. 22 is the occurrence of the extra 
terms (2.17) in the allowed range of solutions ~,-',s" of the constraint equa- 
tions (2.1). These terms are forced upon us by the necessity of using the 
recursion relation (3.1) for the case m =12 = 0 and is what requires us to 
keep track of the three different domains of definition Nr,.s,, N'r,.s', and ~,., ,, 
and the resulting boundary terms ~ .  This complicates the presentation, but 
since none of these terms makes an explicit contribution to the equations, 
we advise the reader to ignore them on first reading. Clearly, the method 
used can be extended to the general case where .~t"') and A are subject only 
to (3.14). We plan to discuss this in a separate publication. 

4. PROOF OF BOSONIC RECURSION RELATIONS 

Our proof that the bosonic forms (2.26)-(2.28) satisfy the recursion 
relations (2.35) relies on various identities satisfied by the q-trinomial coef- 
ficients. Some of these have appeared previously in the literature t46-4s~ and 
some occur in this proof for the first time. For  clarity we will first list all 
the identities we shall require and relegate the proofs of the new ones to the 
appendix. We will then use these identities to verify the bosonic form of the 
recursion relations. The three distinct cases will be considered in separate 
subsections for v >/3. The special case v = 2 is easily treated by the same 
methods, but the proof  will be omitted. 

4.1. Identities of q-Trinomials 

In the course of our proofs we will need several identities satisfied by 
the q-trinomials. These identities are of three types: 
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A.  Pascal triangle identities which are nontrivial for q = 1: 

T_,,(L, A; qU'-) 

= T _ , , ( ' L  - -  1, A + 1; ql/2) -k- T _ , , ( L  - -  1, A - -  1; ql/2) 

+ qL-~l-, ,V2T_,,(L_ 1, A; ql/,_) + (qt.-  l _ 1) T_,,(L--2,  A; ql/2) 

(4.1) 

TI(L, A; qm) _ TI(L - 1, A; qm) 

=qCL+AI/ZTo(L- 1, A + 1; qm) + qcL-A)/2To(L_ 1, A - 1; qU,-) (4.2) 

B. Identities derivable from the Pascal triangle identities (for q = 1): 

To(L, A; qU'-) _ To(L_  1, A - 1; ql/,_) 

= qA+ u'-[ To(L ' A + 1; qU'-) _ To(L_  1, A + 2; qU2)] (4.3) 

TI(L, A; qU2) _ TI(L ' A + 1; qU'-) 

= qlt--A~/2To(L- 1, A -- 1; q m ) _  r lV,_To(L_ 1, A + 2; qU2) 

(4.4) 

TI(L + 1, A; ql/Z) + T1(L, A; qU'-) 

= T_t(L,  A + I; qU2) + T_I(L,  A - 1 ;  qUZ) + 2T_I(L,  A; q u'-) (4.5) 

C. Identities which become tautologies when q = 1' 

T1(L, A; qU2) _ T~(L, A + 1; qi/,_) 

= q~I--AI/'-To(L, A; ql/2) _qll_§ Ii/,-To(L ' A + 1; qlp-) (4.6) 

T_I(L,  A; ql/,_) _ T _ I ( L -  1, A 4- 1; qU2) 

=qlL T-AV2To(L, A; ql/Z) _ q L T _ I ( L _  1, A + I; qU2) (4.7) 

e L  + A)/2To(L, A; ql/Z) _ TI(L, A; ql/2) 

= ( q L - - 1 ) [ T _ I ( L - - 1 ,  A ; q U 2 ) + T _ I ( L - - 1 ,  AT-1;qU2)] (4.8) 

To(L, A; ql/2) _ To(L, A + 2; qU'-) 

=,qlL-AV'-TI(L, A; qU'-)_qlZ-+'§ ' A +2;  ql/2) (4.9) 

The identities (4.1) with n = 0  and (4.3) are needed for the proof in the 
NS sector. Identity (4.1) is proven in the appendix and (4.3) follows by 
combining Eqs. (2.26) and (2.29) of ref. 46. 

The identity (4.1) with n = - 1  and identities (4.2), (4.4), and (4.6) are 
needed for the R -  Ramond sector. Identity (4.2) is Eq. (2.16) of ref. 46, 



8 1 6  B e r k o v i c h  e t  al. 

identity (4.6) is Eq. (2.20) of ref. 46, and identity (4.4) follows from com- 
bining (4.3) and (4.6). 

The identity (4.1) with 1l= 1 and (4.7)-(4.9) are needed for the R + 
Ramond sector. Identity (4.7) is (2.23) of ref. 46 with B = A  + 1, identity 
(4.8) is obtained by combining (2.23) and (2.24) of ref. 46 both with 
B =  A + 1, and identity (4.9) is proven in the appendix. Finally, identity 
(4.5) is needed to establish an R §  - connection and to derive (1.22). 
Identity (4.5) is also proven in the appendix. 

4.2. Proof of the Generic Equations for All Sectors 

We separate the recursion relations (2.35) into two classes: the equa- 
tions for ho ..... h,,_ 3, which we call generic, and the last equation of (2.35) 
[or  equivalently (2.38)], which we call the closing equation. The proof of 
the generic equations is identical for the three separate cases of NS and R-+. 
In all cases the generic equation follows immediately from the identity (4.1) 
and the fact that the bosonic polynomials (2.26)-(2.28) are linear combina- 
tions of T_,, with n given by (2.36). The identity (4.1) guarantees that the 
generic recursion relation holds for each term separately in the sum over j. 
Consequently, these generic equations do not determine the factors 

( _  l )J qVj'-+~s' +~l-I,,I)/z)j 

which appear in (2.26)-(2.28). These factors are determined by the closing 
equation and for this the three cases need to be considered separately. 

To keep notations manageable we will write T,,(L,A) instead of 
T,,(L, A; q~/2) throughout the rest of this paper. 

4.3. Proof of the Closing Equation for the 
Neveu-Schwarz Sector 

To verify the closing equation (2.38) for the NS bosonic polynomials 
(2.26) we consider 

- -  R ~v,0) ( T  ~ D ( v 0 )  ( T  I N s ( L ) - - , _  l.s',~, q J - / ~  v "-" 2,s",~- 1, q) (4.10) 

and substitute (2.26) to find 

INs(L)= ~. ( - -1 ) Jq  'j2+ls'+l/-'u 

x(To(L, 2 v j + s ' - v + l  + To(L, 2v j+s '+v  ) 

- - T o ( L - - 1 , 2 v j + s ' - v + 2 ) - - T o ( L - 1 , 2 v j + s ' + v - l ) )  (4.11) 
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This does not vanish term by term under the summation sign. However, if 
we first send j ~  - j  in the first and third terms inside of (.-.) and use 
(2.24), we have 

INs(L)= ~ (--1)Jq'J'- 
j ~  --~c. 

x (q~"'+l/21J[To(L , 2v j+ v + s ' ) -  T o ( L -  1, 2~j+ v + s ' -  1)] 

+q-iS '+ l/2~J[ To(L, 2~j+ v -  s ' -  I ) -  T o ( L -  1, 2vj + v -  s' - 2) ]) 

(4.12) 

In this sum the terms with j and - j -  1 cancel by use of (4.3). Thus we 
have completed the verification that the NS bosonic polynomials (2.26) 
satisfy the recursion relations (2.35) with n = 0. 

4.4.  Proof of the Closing Equation for the R -  Ramond Sector 

To verify the closing equation (2.38) for the R -  polynomials (2.28) we 

v--2 

E 
i = 0  

[TI(L, 2v j+s '  + 1 - v + 2 i ) -  T~(L, 2v j+  s' + 2 - v + 2 i ) ]  

+ [T1(L, 2 v + s ' - -  1 + v ) - -  T I ( L - -  1, 2 v j + s ' - -  1 + v)] 
v - -  2 

- ~, [ T l ( L - 1 , 2 v j + s ' + 2 - v + 2 i )  
i = 0  

-- T~(L - 1, 2vj + s' + 3 - v + 2i) ] (4.15) 

consider 

R ( v , - - I ) ( f  R(v. - - I ) ( [  IR-(L) = ~,,-l.s ' ,~, q) -- ~v-2. .r  -- 1, q) (4.13) 

and substitute (2.28) to find 

IR- (L)=  ~; (--l)Jq"J2+~7 
j ~  - - c c  

i =  --(v-- l) 
v--2 / 

-- ~ ( - l ) " - 2 + i T l ( L - - 1 , 2 ~ j + s ' + i )  (4.14) 
i =  --(v-- 2) 

We now transform the summand of (4.14) for each j by adding and sub- 
tracting T I ( L -  1, 2~j + s' - 1 + v) and regrouping terms to obtain 
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Then we use (4.4) on the first line, (4.2) on the second line, and (4.6) on 
the third line and note that all terms cancel in pairs except 

qCL- ~ + ,,i/2(qlZ,,j+,r _ 1, 2 v j  + s' + v) 

+ q -~2'J+s'VZTo(L -- 1, 2vj + s' - v)) (4.16) 

Thus we have 

ct3 

I R - ( L ) = q  (L-l+v)/2 ~_, ( - -1 )Yq  r 

• [q('-~J+'V2To(L - 1, 2vj + s' + v) 

+ q-~'-'J +'r - I, 2vj + s' - v)] (4.17) 

which is seen to vanish if we replace j by j + I in the second of two terms 
in [ . . - ] .  Thus we have completed the verification that the R -  bosonic 
polynomials (2.28) satisfy the recursion relations (2.35) with n = -1 .  

4.5. Proof of the Closing Equation for the R + Ramond Sector,  
R + - R -  Relations 

To verify the closing equation (2.38) for the R + polynomials (2.27) we 
consider 

IR*(L) BI, V"~ ,(L, q) cv, ll = ,_ ,. --B,,_z. .r 1, q) (4.18) 

and substitute (2.27) to find 

IR+(L) = ~ ( -1 )Jqr162  2 v j + s ' - v + I )  
j = - -  , ~  

-- T _ , ( L - -  1 ,2v j+ s ' - - v +  2)] 

+ [ T _ j ( L ,  21j+s '  + v ) - -  T _ j ( L - -  1 , 2 v j + s ' +  v--  1)] 

+ [T_1(L,  2 v j + s ' - v ) -  T _ , ( L -  1, 2 v j + s ' - v +  1)] 

+ [ T _ l ( L ,  2 v j + s ' + v - 1 ) - T _ ~ ( L - 1 , 2 v j + s '  + v - 2 )  ]) (4.19) 
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We now use (4.7) on each of  the four terms inside of  ( . . . )  to obta in  after 
regrouping 

I R + ( L ) =  ~ ( - 1 ) / q  vJ2+~''j 
j ~  --r 

• ( [ q t L - , . ' - v +  ~ +2vm/ZTo(L ' 2 q + s ' -  v + 1) 

+qCL+~s'+~-1+2"J)]/ZTo(L, 2 v j + s '  + v - -  1)] 

- q L [ T _ ~ ( L - 1 , 2 v j + s ' - v + 2 ) +  T ~ ( L - 1 , 2 v j + s ' - v + l ) ]  

_ q L [  T _ ~ ( L _  1, 2 v j +  s' + v -  1 ) +  T _ j ( L -  1, 2vj + s' + v - 2 ) ]  

+ [r 2 v j + s '  + v) 

+ q t L - c s ' -  ~+zvj~l/ZTo(L ' 2vj + s' - v)])  (4.20) 

The  expression in the last set of  the square  brackets  is seen to vanish if we 
t a k e j ~ j +  1 in the second of the two terms in [ . . . ] .  Then, if we multiply 
both sides of (4.20) by ( q L  1) and use (4.8) on the contents of the second 
and third sets of square brackets, we obtain 

(qZ _ 1 ) IR+(L) 

= ~ qr 2 v j + s ' + v - 1 )  
j = - o~ 

_ qE L - ~.r - ~ + I + 2q) ]/2 To( L ' 2vj + s' -- v +  1) 

+ q L T ~ ( L ,  2 v j + s '  + v -  1 ) + q L T ~ ( L ,  2 v j + s ' - v +  1)) (4.21) 

We now let j ~ j - - 1  in the first and third terms in ( . . . )  to obta in  the 
expression 

(qZ _ I ) IR+(L) = ~ ( -- 1 )i q,.iIj- I~ + s'/+ IL + ..... ' - -  I)/2 
j - - c t 2 ,  

x (To(L ,  2vj '+ s' - v -  1) - To(L, s ' - -  v +  1) 

_ q E Z - c , . ' - , -  l + 2,jll/,_Tl (L,  2vj + s' -- v -- 1 ) 

+ qEL+~.,"-,+ 1 +2~jI3/,-TI(L ' 2 q  + s' - v + 1 )) (4.22) 

which vanishes te rm by te rm under  the s u m m a t i o n  sign due to (4.9). Thus  
we have comple ted  the verification that  the R + bosonic  polynomials  (2.27) 
satisfy the recursion relat ions (2.35) with n = 1. 
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We conclude this section by noting the following intriguing identities: 

I v , - - 1  ( v , - - I }  - -  i v . l )  ( v , l )  S # F,.s, ~(L+I,q)+F,.,. , . ,  (L,q)-2[B,.,..,.,(L,q)+B,.,..,.,+~(L,q)]; ~ v - 1  
(4.23) 

F',.:'.,7_'~(L + 1, q) + FIJ'.',7_'~(L, q) = 2B',JI',I ~_ ,(L, q) 

which can be easily proven with the help of (2.34) and (4.5). 
These identities reveal the intimate connection between R + and R -  

representations of the Ramond sector characters. 

5. T H E  I N D I C E S  

In this section we turn to the objects F.,.,~""~(q) and -" '  ''~ and B v' (q) prove 
the properties discussed in the introduction. To this end we introduce the 
polynomials ~ TM "J F,.,..,., (L, q) as 

~~,,.,,~ ),,,, q er+z.r,,.,, f i  [nj + m j] F, . , , . , (L,q)= ~, (--1 
" L nj ~r'..r j = I 

n = 0 ,  -t-1, r ' = 0 ,  1 ..... v - 2  
', ( 5 .1 )  

and 

lira ~ ( ' " " )  ~"' ' ' )  F,....,., (L, q) =F~., (q) (5.2) 
L ~ ,m 

I v ,O)  E'I  v . O ) I T  F r,,. e (L, q) = qe "-"i) (5.3) 

which hold for all r'. 
It is straightforward to repeat the analysis carried out in Sections 3 

and 4 to prove recursion relations for P~,.:I'.~P(L, q): 

~ ( v , n ) l  l" ~ I v ,  n )  _ _  q L  - ~ l ~ ( v . n )  o,.,.' ,~ ,q )=Fl . . e  ( L -  1, q )+(1  -")/2) Fo..,., ( L -  1, q) 

- ( v a t )  + ( q r - ~  l )Fo,  s , ( L - 2 , q )  (5.4) 

-c,,.,,I -c,,.,,> P ' , " >  t r  1, q) F,.,.,.,(L,q)= I, - �9 Fr'- , , . , . ' (L- q) + -,.' + c.,.',- 

_qL-Cl-,,vzpl, , . , ,>fL_ 1, q) r' s t . 

+(qL-'--I)P~,3,-~P(L--2, q) for 1 ~<r'~<v--3 (5.5) 

p ( v , n )  ( T  ~ ( v , n )  ,.- 2.s',-, q) = F , _  3..r -- 1, q) _qL-ll-,,wzTe,,.,,)_,,_z,.~.,,~t r _  1, q) 
- -  I - -  ( v . n )  + qL F,,_2..,.,(L - 2, q) (5.6) 

where Qf, Lf,,..,.,, and ~,.,..,., are defined in (1.8), (1.9), and (2.17). One can 
easily establish 
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with v t> 3, 

~(2,,,)t r qL--( l - , ) /2)  ~ ( 2 . n )  o,.," ,~,  q ) = ( l  .. - Fo,.,., (L - I, q) +qL-IP(o'-.:,~(L - 2 ,  q) 

and identities 

(5.7) 

where 

p (  v.O)l r -(v,o) ,.,.s, ,~,  q) = B,., ,., ( L ,  q )  

~ ( v . l ) / r  __  - - ( v . l )  ~ ( v , )  ) i T  r'..,-' ' ~ ,  q )  - F,.,..,., ( L ,  q )  - -  _,.,..,.,- , ,~,  q) ,  s ' :~0  

(5.8) 

(5.9) 

and 

•(,,.o)r )c+.,.'+,-' ~, q,,j2+(.~'+l/2)J(To(L, 2vj+s, r, ) ,.,,.,., , _ , q ) = ( - 1  
j = --.:r. 

- To(L, 2~q+s'  + 1 +r')) (5.10) 

~,,,t)lr q ) = ( _ l ) L + , - ' + v + )  ~" q,J-'+.,"J 

x ( T_)(L,  2vj+s' +r' + 1) - T_)(L, 2vj+s' - r ' )  

+T_)(L,  2 v j + s ' + r ' ) - T _ t ( L ,  2 v j + s ' - r ' - l ) )  (5.11) 

Identity (5.10) could have been proven directly by simply replacing q)/2 
with __q)/2 in (2.32) and then using (2.25) and (5.3). To avoid confusion 
we want to stress that B(o'"))(q) defined by (1.20) is not the L--* oo limit of 
~'rr'o ~'(L, q). 

If we let L--* o~ in (5.9) and apply the limiting formulas (2.29) with 
11 = 1 a n d  ( 5 . 2 ) ,  we obtain 

F!,,:"')(q) = P's:'~](q), s' # 0  (5.12) 

i.e., p(,,.l)(~) does not depend on s'. In fact, s '  t /  

/~!,:')'(q) = 1 (5.13) 

as stated in. the introduction, Eq.(1.19). To see this, we rearrange 
(5.4)-(5.7) in the following fashion (suppressing the argument q for com- 
pactness ): 

1. For  v = 2  

PI'-'I~(L)+qL~'~o'-.~.II(L--1) P l z I ~ ( L - 1 ) + q t ' - ' F ( Z ' ) ( L - 2 )  ( 5 . 1 4 )  0 . s '  .. ~ O.s '  O.s '  
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2. For v~>3 

P~" l~(L) + ,~LFCV' I)(L -- l ) 
O,a" ~/ (}..Y' 

= P~o~',.!'(L - 1) + P',~:,.! ' (L - 1) + (qL-,  _ 1) P(o~',.} ' ( L  - 2)  

F . , . , ( L ) + q  F e s , ( L - 1 ) - . . , _ L s , ,  

--P~"~--; + L."~tr--1)+(qL-~--I)Pt/ ' : , ! ) (  L - 2  ) for 

~.~,,,1~ [L~--.L~qv.  1) / L _ l ~ _ p ~ . . J )  t r - -  v-2.s'~ ~-t-'t l"v-2,s'~ / - - v -3 , s '~  1) 

= qL- ,p~ . l )  tL - -2~  
~ V - -  2 , S  ' l ,  I 

We add together the v -  1 equations to find 

v -- 2 v - -  3 

t--~,,.,.,fP("~'tf,--, q)+qC;~/'~,'(L, -- I, q)] -- ~ Fr,~.,(L-l,q)-t"J) 
r ' = O  r ' = O  

v - -  2 

[P{~'~tL~ 1, q ) + q L - l ~ { ~ , ~ t r _ 9  q)] 
r '  = 0  

v - - 3  

-- ~ P~/I',!,'(L--2, q) 

(5.15) 

l<~r'<~v--3 

(5.16) 
r '  = 0 

The above is of the form I ( L ) = I ( L - - 1 ) .  Thus both sides are separately 
equal to a constant independent of L which by evaluation for small L is 
found to be 1, and hence 

* , - -2  v - - 3  

-L/Wv'IJ(L 1, q)] ~ P~v'l)(L-- 1, q ) =  1 (5.17) ~, [F',~'.~,,'(L, q) + '1 r'..,: -- - -  - - r ' , s ' ,  

r ' = O  r ' ~ O  

Taking (5.2) into account, we may send L ~ ~ in (5.17) to derive 

- - ( v , l  ~ ( v , l )  F s, ~(q)= lim 1 (5.18) Fr, s, (L, q )=  
L ~ c ~  

which proves (1.19) of the introduction. 
When v ~ 2 there is yet another bosonic companion of P~2'I)(L, q), O,s'  

s ' =  O, 1. Indeed, in this case (5.17) becomes a simple first-order difference 
equation 

~'~2"')(L, q) + qt'~'to2"~))(L 1, q) = 1 (5.19) 

By direct evaluation, one finds boundary conditions for (5.19) 

~ , ( 2 ,  , S t  0j  ~(s', q) = 1, = 0, 1 (5.20) 
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It is now trivial to solve (5.19) and (5.20) to obtain 

L --s '  
p~2, l lr L ) j  q L j - j ~ j -  1~/2 o,s'~ , q ) =  ~ ( - 1  (5.21) 

j = 0  

From this the limit (5.18) is immediate. 
Next let us consider p t2 , -~rL  o..,-, ~ , q), s' = 0, 1. If we define 

Xs , (L ,  q)  p t 2 , - l l r r  ~ ~12"-IJ(L-- 1, q) (5.22) 
= ~ O , s '  ~ L I I  - -  Z O . s '  

then the second-order difference equation (5.7) can be rewritten in the first- 
order form 

Xs , (L ,  q)  = _ _ q L - ' X s , ( L  - 1, q) (5.23) 

This is easily solved to get 

X,.,( L ,  q)  = ( - 1 ) L - 1  qr~L-1~/2X.,.,( 1, q)  (5.24) 

where X0(1, q ) =  -Xl(1 ,  q ) =  -1 .  Then, since 

~ ( 2 , - - 1  _ _ ~ ( 2 , - - I  Fo. o I(0, q) )(1, q) = 1 (5.25) - -  0,1 

we obtain from (5.22) and (5.24) 

L 

FC2"-llrLo, o ~ ,'l* "~ = 1 + E (--1)Jq jU-I~/2 

.,'= t (5.26) 
L 

~,o-. - l ~( L ' ) j  q j {a -  1~/2 o,1 q ) = l -  ~ ( - 1  
j = 2  

From this we note that 

~'(02.1 - l )(L, -(~ q) + FbTb-~(L, q ) =  1 (5.27) 

The equality with the false theta functions (1.22) is easily established by 
letting L--, m in (5.26) and (5.27). 

In fact, Eq. (5.27) can be generalized to 

v--  1 

1= ~ P(,: I - , . r"(L,q)  (5.28) 
s' = 0  

To prove (5.28) it is sufficient to notice that a constant is always a solution 
to (5.4)-(5.6) with n =  - 1  and that (5.28) holds true for L = 0 ,  1. Letting 
L-+ oo in (5.28), one recovers (1.21), (1.24) for s' =0.  
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To verify (1.21)-(1.24) in general, we will need the following analog of 
(4.23): 

- - ( v . - -  I ) ( L  - - ( V , - - I  F,., ,, + 1, q) )(L, q)=B'r~"O?+,(L, q) ~ ' " "  .. -Br,.~.,(L,q) (5.29) - -  F r ,  a ., , ,  

which is proven by observing that the lhs and rhs satisfy the same equa- 
tions (5.4), (5.5) with n = 1 and that (5.29) holds true for L = 0 ,  1. Then we 
use (5.29) along with use (5.29) along with 

_l ~(v'- l)/r- (~ .. ,.,..r , ~ - v ,  q)=~r,  ,,, (5.30) 

to find the bosonic companion of Plrr~.,.Tl~(L, q), 

L 
~ ( ) , .  - l / ~ l v . I )  11 - i v ,  l )  Fr, e,. ' ( L +  1, q ) =  ~ t-,'..,.'+ l,-, q) - B r , .  r (l, q)} +6~,,,, (5.31) 

/ = 0  

To proceed further, we set r' = 0  and send L to infinity in (5.31) and use 
(5.11) to find 

- - I v ,  ~ , l v , - l i l t  Fs ' - l~(q)= lim q) 
L ~ r ~  

= ( - 1 ) ' r  ~ qr162 

+ ~ q'-i"+c"+"Jg(2vj+s'+l,q)}+6o..r (5.32) 

where 

g(j,q)= ~ (--lf[T_,(I,j+I)--T_,(I,j--1)] 
I=0 

The function g(j, q) has the two important properties: 

g(--j, q ) =  -g(j, q); j E Z  

(5.33) 

(5.34) 

and 

g(j,q)+g(j+l,q)=--c~j.o; j~Z,  j>~O 

Formula (5.34) 
proven in the 
uniquely as 

(5.35) 

is a simple consequence of (2.24) and formula (5.35) is 
appendix. Clearly, Eqs. (5.34) and (5.35) specify g(j, g) 

g(j,g)={(oTl)Jsign(j), j~O 
j = O  

(5.36) 
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Combining (5.36) and (5.32), we obtain 

~ ~ v . - l ~ ( q ) _  ~,,~ Iv l  
F s, - I e  ( q ) - I r  (5.37) 

with "1 I.r (q )  defined by (1.23). Thus, we completed the proof of (1.22). 
To the best of our knowledge, the q-trinomial representation (5.31) of 

the "truncated" false theta function has never appeared in the literature 
before. 

We conclude this section with a derivation of the q ---, 1 - limit (1.25) 
of the false theta function (1.23), I!~,l(q), given in the introduction. To this 
end we rewrite the sum in (1.23) as 

(v),  �9 ~ ,  - v ' x~ t J ) ( e -S 'X t j ) t l t nq l ) l / " - - eS 'X ( j ) t l l nq l ) t~ )  (5.38) ls ,  t q ) =  1 + e 
j = l  

where 

x ( j )  = j (  Iln ql) ~/2 (5.39) 

As q---, 1- ,  the rhs of (5.38) is dominated by large j terms and, as a result, 
can be approximated by an integral 

ff ~ d x  e - vX2(e  -s,.x-{ IIn ql)  1/2 - -  eS'X{ IIn ql)  I~ ) (5.40) 
l!~?'~(q)~ 1 + (lln ql) ~/2 

Expanding 

e-S' '~ I,, ql )1/2. __ eS,.,. I iln ql)l/J- = -2s 'x ( ln  q[) 1/2 + O(ln q) (5.41) 

we find the limit 

f: l im I I'l~, (~1") = 1 -- 2s '  x e  - ~''- d x  
q ~ l  

S ! 
- 1 (5.42) 

V 

The formula above is the result (1.25) we set out to obtain. 

6. D U A L I T Y  q~q-1  

The bosonic and fermionic polynomials given in Section 2 reduce to 
the characters of the SM(2, 4v) superconformal model as L---, ~ when 

822/83/5-6-3 
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q < 1. However, when q > 1 it is also possible to take the L --+ oo limit after 
removing a suitable power q. We show here that this leads to the linear 
combinations of  the characters of the minimal model M(2v-- 1, 4v), where 
we recall that for all models M(p,p') the bosonic form of the characters 
(normalized to one at q = 0) is t551 

x ( P "  P ' ) ( G )  = Y ( P ' P ' )  ([1~ 
r .  s -1 * ~ . p  - -  r .  p '  - -  s ,  -* - 

l o-. = (q)~. j_~ (qj(jpp' +,.p'-~.p~_ Cj?+r)~jp' +.~ (6.1) 

We study the region q > 1 by making the dual transformation q --+ q -  
in the bosonic/fermionic polynomials. It is worth mentioning that this 
operation has a direct physical meaning: it transforms particles into holes 
and vice versa. 

We use the definition (2.22) to express the dual polynomials in terms 
of (L'A~'":")2 : 

1. In N S  as 

L2/2 ( i , . 0 )  - -  I q B,.,.,.,(L,q ) 

= ~ ( -1 )Jq  -r 

\ 2vj+s'--r '  2 

+ q , . . ,  +,+ (6.2) 

2. In R -  as 

qt.lL - I ~/2BC ,,. - J ~(L,  q - J ) 
r',.r 

= ~ ( - 1 ) S q  - ' : / ' - ' v  
j = --,~c. 

r '  

E ( _  l ),.' +i ql2,j+.,.' +i~2,j+v +i-l~/z (L, 2vj + s' + i - 1 ;  q) 
2vj+s' +i 2 

(6.3) 



N =  1 Superconformal  Model SM(2, 4v) 827 

3. In  R + a s  

qL(L+I)/2 (v,l)(]'. - - 1 )  B~,..,., , ~ ,  q 

1 L q-q"-.,'7 = ~ .  ( - - 1 7  
j =  - -o '5  

x(qlZ~j+.,'-~'-.),z~j+.,.'-,.')/z[(L, 2vj+,s'--r';q~ 
\ 2vj+s - r ' - I  ,I 2 

r+l;q)] vj+s r 2 

2vj+s' +r' 2 

, (6.4) 

In this form we may now let L---, ~ by using two limiting results of 
ref. 46, 

lim (L,A;q)  = 1 
t .  ~ o~. A 2 (q)~ (6.5) 

lim ( L , A - I ; q )  = 1 +qA 
- ~ A 2 ( q ) ~  ( 6 . 6 )  

and the asymptotic formula, which can be derived from (6.5) and (2.23) of 
ref. 46, 

lim [ ( L , A + I ; q )  +qA+~(L,A+2;q) ] 1 
L ~  A 2 A + I  2 = ( q ) ~  (6.7) 

to obtain for n = O, + 1 

(1 + 0(n >0 ) )  lim qLIL+,,V2Br,.r l) 
L ~ c t 5  

=q~"'-r'lC'r ,.2,,- z,.'- I + I-I(q) 

"~-q (s'+r'+lRs'+r'+l-lnl)/2v(2v-1"4v)A v + r ' ,  2v  - -  2 s '  - -  1 + I,,l(q) (6.8) 

Equation (6.8) demonstrates that in the limit L +  m the model 
SM(2, 4v) is related to the model M(2v- 1, 4v) by the dual transformation 
q---, 1/q. This latter nonunitary minimal model is a special case of the 
models M(p,p') studied in ref. 36. It is of interest to note that while the 
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dual polynomials (6.2)-(6.4) yield M ( 2 v - 1 , 4 v )  characters in the limit 
L--* oo, the dual polynomials themselves are not the same as those of refs. 
56 and 36. This emphasizes the fact that there are many different polyno- 
mial expressions which yield the same character in the L --* oo limit. Indeed 
the polynomials of this paper and those of refi 36 must be different because 
in ref. 36 the M ( 2 v - 1 ,  4v) polynomials transform into the M ( 2 v +  1, 4v) 
polynomials, while the polynomials (6.2)-(6.4) transform into SM(2, 4v) 
ones. 

Curiously enough, the SM(2, 8) model is, in fact, self-dual: 

lim qLZ/2B~oZ.'~.~ /~I,3--2S'['lITtlt'~• 2.3 - ~.'~'l ,,t'~ 
L~oo 

_,,,'/2~1z,81 (,,) (6.9) 
- - t /  / -  1,3 -- - 's '  ~1 

lim qZ(Z +ll/2B~2' -~2 q~S,-ll/2(~(3.8) In) 
L-oo o . , ,  q - ' ) = 3 + l  A, 1 . 4  - -  _ . ," ' ,  "1 + qx~'4~ ~.'(q)) 

2 
= - -  + q ~ s ' , O )  )(.I,2+~"(q) (6.10) 3 + l q(S'- 1)/2( 1 ^(2,8) 

where s ' =  0, 1. 
To complete the study of q-duality we transform the fermionic sums 

using the relation 

n + m ]  = q  ...... I n + m ]  (6.11) 
m Iq-~ m ]q 

We then obtain fermionic sums with a quadratic form matrix of the type 
discussed in ref. 36. In particular, we consider the v x v matrix B defined by 
its matrix elements 

2 for j = k = l  

/8k .2  for j = l , 2 < ~ k < ~ v  

(B)j,~ = '~ 6j.2 for k=l , 2<~ j<~v  

\ otherwise 

(6.12) 

We also define 

ffn' = ( nl , rn2, m3 ..... my) (6.13) 
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and the ( v -  1 )-dimensional  vector  v Ik) 

(vtk))i=kO(1 <.i<. v - - k -  1 ) + ( v -  1 - i )  0 ( k > 0 )  O ( v - k -  1 <i<.  v -  1) 

(6.14) 

where k = 0, 1 ..... v - I. Then,  the q-duali ty t rans form of  the fermionic poly-  
nomials  (2.10) can be expressed as 

, , , , , , ,  _ ,  nr,,,+m,] q r . . . . .  } , , ,  , (6.15) q F , . , s , (L ,q  ) =  y '  - ,.., 
~,,~ i= 1 L ni J q 

where 17, 9,, .,., are given by  (2.36) and (2.17) and q~,,(~, r', s ' )  is defined as 

�9 ,,(~, r', s') = �89 + L,,(fia, s') + C,,(r', s') (6.16) 

2L,,(ffl, s ' )=f fTv- f f~  ..... , + theft,.,, _ l + (2fftl + rh2)(n + J < v _  ~) (6.17) 

4C,,(r', s') = s ' - r '  + (1 +217) Js, .v- l (6.18) 

We now let L ~ ~ to obta in  the following: 

lim a L~L +')/2F(v")t [. 
L ~ J  

m i n [ r ' . s ' ]  " -' " = g ~ .  q . , , ,  . . . . . .  ) 

k=O m-restrictions[k] (q),r,l (q)a,2 

x Jk . . . .  + O ( v - 3 > ~ k )  ((1 - B) m ) i -  -I~'l _ . (6.19/ 
i=3 mi J c,q.J 

_ts') and a t'') where the inhomogeneous  vectors  u a __~ are given by (2.12); the 
res t r ic t ions[k]  on the s u m m a t i o n  variables fia are 

ffli--fflv=(Vts')+vtr'})i_l(mOd2), i = 2 , 3 , . . . , v - k - 1 ;  k # v - 2  (6.20) 

~,,_, = - 2 ( k  - - j ) ;  j = 0, 1, 2 ..... k :/: 0 (6.21) 

and the symbol  []] , . .q in (6.19) s tands for the convent ional  q-binomial  
coefficient (i.e., it vanishes if either A or B takes on negative values). 
Remarkab ly ,  it turns out  that  the formula  (6.19) can be simplified as 

l im t ' l L t L  + n ) / Z F ( v ' n ) (  ]'. 

L~o'o 

q .,,.~,.,.',s') 

= 2 
fit-restrictions[O] (q)dll (q),r~2 

x f i [  ( ( 1 - B )  fil)i-a~'')-a~'')]_ (6.22) 
i=3 mi Jq 
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Combining results (6.15), (6.22), and (2.32)-(2.34), one derives the 
following Fermi/Bose M ( 2 v -  1, 4v) character identities: 

lim aC-/2Fr176 q - l )  -j - - r t . s  ' x - -~  

= i / i s '  -- r '  )2/2yr  -- 1,4v) { n ~  -~- : t  (s '  + r '  + I ) 2 / 2 v ( 2 v -  1,4v) -~ . . . .  . '-l.2,,-z,. '-x~u, o~ ,~,,+,'.2,,-z,.'-l(q) (6.23) 

lim q L ~ t - ~ v 2 ; ' ' - ~ ) r r  - , ' , , , - i ~ ,  cI -I  ) 

q ( V - - r ' - -  l ) ( v - - r ' -  2)/2v(2V--Av_r,_l,4vl[n~ 1 , 2 ~ I  ] -[- qlV+r'llv+r'- l)/2v(2v--A,v+ r' .2l '4v){ n~*l] (6.24) 

lim aL(L-J~/2Fr q - l )  
-,1 - -  r ' . .r 

L ~ 

qlS'-r')(s'-,"-11/2 ( 2 v - l , d v )  {,q~ q(S'+r'l(s'+r'+l)/2at~2v-I dr) ~ �9 
= Z .. . .  .'-l.2,-,_~.'~u, + ^,,+,'.;',,-2.r 

"[-q Is'-r'+r162 - 2 ( q )  
A t ,  -- r' -- 1.2v -- 2s '  

+q r162162 -2(q), s' ~,, +, ' .2,-  2.,.' ~ v - -  l (6.25) 

lim qLCL+I~/2(F,.,..,.,~,,, l ~(L, q - l ~ 4- F~''l I ,  -- --,',.,: - l +a,.o(L,q-l))  
L ~ 7-, 

q L r  { n ~  
= A v + r ,  2 v _ 2 s , , , ~ l l  

. q _ q ( S ' - - r ' l ( s ' - - r ' - - l ) / 2  (2v - -  1,4v) {,q~ X .... - '-  j.2,,-_,.,.'~uJ (6.26) 

Equations (6.23) and (6.24) are consistent with the results obtained in 
ref. 36 whenever r '  or s' is equal to 0. In the general case identities (6.23) 
and (6.24) are new. They demonstrate how two quantum groups describing 
braiding properties of the conformal blocks "interact" on the character 
level. Identities (6.25) and (6.26) are also new. It is of interest to ascertain 
whether or not these new identities can be obtained by means of the Bailey 
lattice techniqueJ 57"z4~ 

We conclude this section with the following observation. It appears 
that there exist RG flows connecting dual regimes of the same model. In 
particular, it was proposed in ref. 58 that dual regimes Z,,_, and 
M(v, v +  1) of the ABF model r are RG connected as 

Z,,_,  + ~ ( / ,  +~(b~--*  M(v; v+  1) (6.27) 

Recently, the duality M(p,  p')*> M ( p ' - p ,  p')  established in refs. 56 and 36 
was given the following RG interpretation in ref. 60 (see also ref. 61): 

M ( p , p ' )  + ck,_,~ ---, M ( p ' - p , p ' )  (6.28) 

It is thus plausible that one can find an appropriate  operator  which would 
generate a RG flow connecting SM(2, 4v) and M ( 2 v -  1, 4v). 
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7. ON THE COMBINATORIAL  BASES 

It is well known that each side of a Rogers-Ramanujan-type identity 
can be interpreted as a generating function for a certain set of restricted 
partitions/63~ In particular, let B~,s,(N ) denote the number of partitions of 
N into parts :~2(mod4)  and :~0, _ _ ( 2 v - l - 2 s ' )  (mod4v),  and let 
F,,,.,.,( N) denote the number of partitions of N of the form 

N= ~ ~ (7.1) 
i = 1  

where 

f ~ + f 2 < ~ v - s ' - l ,  f2,_,  ~< 1, f2i+f2i+l-t-f2i+2<~V--1 (7.2) 

Then F"~ B~V'~ ) .,.. ,1 v q j is a generating function for &,..,.,( N)( B,,..,.,( N) ). 
Moreover, according to refs. 40 and 41, Eq. (1.11) implies 

F.,.,( N) = B ,,..e( N) (7.3) 

By analogy with the analysis given in ref. 62, Melzer ~3sl proposed a 
representation-theoretic interpretation of (7.3) which we rephrase as 
follows. 

/~(2,4v) Let _ .2.-2.,.,-~) be the highest weight state of conformal dimension 
Z~(2,4v) in the Verma module of NS sector of SM(2,  4v). Then the set 

I ,  2 v - -  2 s '  - -  l 

of states 

w,.*,,,.. > " _ ~ , 2 v - -  2 s ' - -  I (7.4) 

form a basis for the irreducible highest weight representation. Here 

14zi: lL_i/2, / - -even 
vG_i/2, i - odd (7.5) 

L,., G; are the standard generators of the N = 1 super-Virasoro algebra and 
f,. are the same as in (7.2). 

Motivated by the partition identities due to Burge (Theorems 1 and 2 
in ref. 45), we would like to propose a different basis construction for 
SM(2,  4 v ). 

Let us introduce a set of states 

Gf'_" /, �9 Gf'_-2/2G fl 212.4"~ _'" -I/2 ~ .2~-ze-I +,,) (7.6) 
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where n = 0 (1) corresponds to the NS (R) sector and f~ are defined as 

fl<~2(v--s'--n), f2i_,, = 0 (mod 2), f / + f / +  j ~< 2 ( v -  1) (7.7) 

with s' ~ 0 for n = 1. 
We conjecture that the above set forms an irreducible basis. Note that 

our proposal includes both NS and R sectors. 
To prove the above conjectures, it is sufficient to show that sets (7.4) 

and (7.6) are linearly independent. Thus, one is led to the important open 
question of finding an analog of the Kac determinant for the restricted 
partitions. 

8. CONCLUDING REMARKS 

We expect that it would be straightforward to apply the techniques 
and methods developed here to study general N =  1 SM(p,p') character 
identities. Extension to other SU(2) cosets would call for higher spin 
analogs of q-trinomial coefficients whose properties have recently been 
studied. ~65'66) It is important to find partition-theoretic and configuration 
sum interpretations of (2.32)-(2.34). We believe that this interpretation 
would provide important clues leading to Boltzmann weights for new 
integrable models which would have SM(2, 4v) and M(2v- 1, 4v) as dual 
regimes. It would also be interesting to find a q-trinomial generalization of 
Bailey's lemma. Further generalizations of the results of this paper can be 
found in ref. 67. 

APPENDIX. PROOFS OF IDENTITIES FOR q-TRINOMIAL 
COEFFICIENTS 

In this appendix we prove the identities (4.1), (4.5), (4.9) of 
q-trinomial coefficients and the limiting formulas (2.29), (5.35). We follow 
the notation of refs. 46--48. 

The proof of (4.1) is practically the same as that of (2.3) of ref. 48. We 
first use (2.22) to rewrite (4.1) as 

(, 1 n;q / 
2 A - - I  /2 

+qC+A--,,(m-- l'A--n+ l; q) 
A + I  2 

+(L-I'A-n;q)A 2 

+qL-I-"(1--qL--I)( L-2'A-n;q)A 2 (A.1) 
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Then, recalling the definitions (2.21)-(2.23) and (1.2), one can easily derive 

qL-At, ,(L-- 1, A -- 1;j) _qL-- A--j__qL 1 -- qL t.(L, A; j) (A.2) 

qL +A-"t,,(L-- 1, A + 1; j - -  1) 

t,,(L - 1, A; j) - 

qL . . . .  l( 1 __qL--l) t , (L--  2, A;j--  1 ) - - -  

qL - - j  - -  qL 
l _ q L  t , , (L,A;j)  (A.3) 

1 _qL-2 j -A  
1 _ q .  t.(L, A; j )  (A.4) 

qL-- 2j-- A 
1 _qL (1 --qJ)(1 _q(j+A)) t,(L, A;j) 

(A.5) 

Then it is clear that 

qL-At, ,(L-- 1, A--  1; j) + qL+A--"t.(L -- 1, A + 1 ; j - -  1) 

+ t,,(L-- 1, A; j )  +qL . . . .  l(1__qL--I) t . (L--2 .  A ; j -  1) 

qL - A - j  _ qL + qt  - j  _ qL 

1 - ~  1 __ qL 

1 -- qL-2j-A A(1 --q J)___( 1 --qj+A)) 

+ 1 __qL +qL--aj-- 1 __qL 
t ,( L, A; j) 

= t,,(L, A; j) (A.6) 

from which (A.1) follows by summing over j. 
We now prove (4.5). To this end we note that both sides of (4.5) 

satisfy the same equation (4.1) with n = 1. To conclude the proof one needs 
to verify that (4.5) holds true for L = 0 ,  1. This can be easily done by the 
direct inspection. 

Let us now consider (4.9). This identity can be obtained from the 
slightly more general identity 

T,,_ I(L, A; ql/2) _ 7",,_ I(L, A - 2; ql/2) 

=q(L+A)/2Tn(L , A; ql/2) __q(L+2-A)/2Tn(L ' A - 2 ;  ql/2) (A.7) 

by setting n - 1 and letting A --, - A .  We first use (2.22) to rewrite (A.7) as 

(L'AAn;q)2-qA(L'A-n+I;q)2A 

= q ' + " - A [ (  L'A-2-n;q~A-2 /2-(L'AAI--n;q)21\ - 2  (A.8> 
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Then, not ing the identities 

t,,( L, A; j)  -- qAt,,_ ~( L. A; j)  = 

and 

qAi+ A --")(q)L 

( q ) j ( q ) j +  A - I  (q)L--  2 j -  A 
(A.9) 

q' +" -A[ t , (L ,  A - 2 ; j +  l ) - t , , _ j ( L ,  A - 2 ; j +  1)] 

qj ( j+  A --n)(q)L 

(q)j (q ) j+A-I  (q)t-zj-,~ 
(A.IO) 

we see that  

t,,(L, A; j) - qAt,,_ )(L, A; j)  

= q t + " - A [ t , ( L , A - - 2 ; j + I ) - - t , _ t ( L , A - 2 ; j + l )  ] (A.I 1) 

Since 

t,,(L, A - 2 ;  0 ) -  t , ,_)(L,  A - 2 ;  0 ) = 0  (A.12) 

the desired result (A.8) tbllows by summing  (A.11) over  j. 
To  prove  the limiting formula  (2.29) we slightly extend the analysis 

given in ref. 46. Let us use the e lementary  relation 

( q -  l),,, = ( _ 1 )"' qt .... (,,,+ l)]/2(q),,, (A.13) 

in the definitions (2.21)-(2.22) to write 

T,,(L. A; q,/2) 

q l2 - ,a(q) L 
= ~ L -- A even 

1>10 (q)(L--  A-- 21)/2 (q) tL  +.4--2t)/2 (q)2/ 
q2P-+~2-")l(q)L 

= q(l -,)/2 E 
I>~o (q)(L- a - - , I -  I)/2 (q)(/- + A - _,I- I)/2 (q)II+ I 

L - A odd 

(A.14) 

It is now trivial to take the limit 

lim 
q f l j  -- n)12 

1 ~, (q); for L - - A  even T,,( L, A; qJ/2) = ( q)o.: i>~o . . . . .  

= q j (  j - n )/2 

1 ~ for L - A  odd 
(q),'-21>0odd (q)J 

(A.15) 



N =  1 Superconformal Model SM(2, 4v} 835 

from which, using the identity (2.20) of ref. 63 

~- tJqjtj--I)/2 f i  
(1 + tq j) (A.16) 

j=o (q)J j=o 

with t =  ___q~t-"~/2 we obtain the desired result (2.29). 
Finally, let us prove (5.35). Recalling (5.33), we can express the lhs of 

identity (5.35) as 

g(j,q)+g(j+l,q)= lim G(L,j,q), j~Z, j>~O (A.17) 
Z~o'J 

where 

L 

G(L,j,q)= ~ (-1)'• ~(l,j+l)] 
/=0  

--[T_t(I,j+I)+T_,(1, j--1)+2T_~(I,j)]} (A.18) 

Taking (4.5) into account, we find 

G(L,j,q)=(-1) t + ~ [ T , ( L + l , j ) - T ~ ( L + l , j + l ) ] - f i . i , o  (A.19) 

Combining (A.17), (A.19), and (2.30), we obtain the equation 

g(j, q) +g(j+ 1, q) = lim G(L, j, q) = -fij,0 (A.20) 
L ~  

which proves (5.35). 
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